Math, asked by anveshreddy80, 8 months ago

Find the sum of the sequence 7, 77,777, 7777.......... to n terms.

Answers

Answered by SujalGupta8055
1

Answer:

and here is the answer of this question

please make me BRAINLIESTS

Attachments:
Answered by amansharma264
6

EXPLANATION.

 \sf :  \implies \: 7 + 77 + 777 + ...... \: n \: terms \: \\  \\   \sf :  \implies \: 7(1 + 11 + 111 + ..... \: n \: terms) \\  \\  \sf :  \implies \:  \frac{7}{9} (9 + 99 + 999 + ....... \: n \: terms) \\  \\  \sf :  \implies \:  \frac{7}{9}[(10 - 1) + (100 - 1)(1000 - 1) + ..... \: n \: terms] \\  \\  \sf :  \implies \:  \frac{7}{9}[10 + 100 + 1000 + .... \: n \: terms \:  - (1 + 1 + 1 + ....  \: n \: terms)]

 \sf :  \implies \:  \dfrac{7}{9}[10 + 100 + 1000 + .... \: n \: terms \:  -  \: n]  \\  \\  \sf :  \implies \: first \: term \:  = 10 \\  \\ \sf :  \implies \: common \: ratio \:  = r \:  = 10 \\  \\ \sf :  \implies \: sum \: of \: n \: terms \: of \: gp \implies \:  s_{n} \:  =  \frac{a( {r}^{n}  - 1)}{r - 1}

\sf :  \implies \:  s_{n} \:  =    \frac{7}{9} [ \dfrac{10(10 {}^{n}  - 1)}{9} - n  ] \\  \\  \sf :  \implies \:  s_{n} \:  =  \frac{70}{81}  [10 {}^{n}  - 1]  - n \:

Similar questions