Math, asked by ayazkhan3772, 1 year ago

Find the sum of the series 0.4+0.44+0.444+----- to n terms

Answers

Answered by Anonymous
136
I hope this will help u...
Attachments:
Answered by pinquancaro
125

Answer:

The sum of the series is

0.4+0.44+0.444+...+ \text{n terms}=\frac{4}{9}[n-\frac{1-(0.1)^n}{9}]

Step-by-step explanation:

Given : Series 0.4+0.44+0.444+----- to n terms

To find : The sum of the series?

Solution :

Let the series be 'x'

x=0.4+0.44+0.444+...+ \text{n terms}

x=4(0.1+0.11+0.111+...+ \text{n terms})

Multiply and divide by 9,

x=\frac{4}{9}(0.9+0.99+0.999+..+ \text{n terms})

x=\frac{4}{9}[(1-0.1)+(1-0.01)+(1-0.001)...+ \text{n terms}]

x=\frac{4}{9}[(1-0.1)+(1-(0.1)^2)+(1-(0.1)^3)...+ \text{n terms}]

x=\frac{4}{9}[(1+1+1+...\text{n terms})-(0.1+(0.1)^2+(0.1)^3...+ \text{n terms})]

x=\frac{4}{9}[(n)-(0.1(\frac{1-(0.1)^n}{1-0.1}))]

x=\frac{4}{9}[n-\frac{1-(0.1)^n}{9}]

Therefore, The sum of the series is 0.4+0.44+0.444+...+ \text{n terms}=\frac{4}{9}[n-\frac{1-(0.1)^n}{9}]

Similar questions