Math, asked by deepa9999, 1 year ago

Find the sum of the series : 0.7 +0.77 +0.777 +............upto n terms.

Answers

Answered by windyyork
136

Answer: The sum would be \dfrac{7}{81}[9n-1+10^{-n}]bvcbcbc

Step-by-step explanation:

Since we have given that

0.7+0.77+0.777+.......................

We can rewrite it as :

\dfrac{7}{10}+\dfrac{7}{100}+\dfrac{777}{1000}+..............

Insert 9 and take out 7:

\dfrac{7}{9}(0.9+0.99+0.999+..............)\\\\=\dfrac{7}{9}(\dfrac{9}{10}+\dfrac{99}{100}+\dfrac{999}{1000}+.................)

So, it becomes

\dfrac{7}{9}[(1-0.1)+(1-0.01)+(1-0.001)+................]\\\\=\dfrac{7}{9}(1+1+1+...................)-(0.1+0.01+0.001+..................)\\\\=\dfrac{7}{9}(n-\dfrac{0.1(1-0.1^n}{1-0.1})\\\\=\dfrac{7}{81}[9n-1+10^{-n}]

Hence, the sum would be \dfrac{7}{81}[9n-1+10^{-n}]

Answered by brainliest15030
22

 \huge \bold \color{lime} \star {\underline \color{deeppink} \mathcal{HEYA}} \star

0.7 + 0.77 + 0.777 \: .......n \: terms

 \frac{7}{10}  +  \frac{77}{100}  +  \frac{777}{1000} .......n \: terms

Taking 7 common and multiplying and dividing by 9, we get

 \frac{7}{9} ( \frac{9}{10}  +  \frac{99}{100}  +  \frac{999}{1000 } + .......)

 \frac{7}{9} (0.9 + 0.99 + 0.999 + .....)

  \small{\frac{7}{9} ((1 - 0.1) + (1 - 0.01) + (1 - 0.001) + .........)}

  \small {\frac{7}{9} ((1 + 1 + 1 + ....) - (0.1 + 0.01 + 0.001 + ......))}

 \frac{7}{9} (n -  \frac{0.1(1 -  {0.1}^{n}) }{1 - 0.1} )

 \frac{7}{9} (n -  \frac{0.1(1 -  {0.1}^{n} )}{0.9} )

 \frac{7}{81} (9n - 1 +  {0.1}^{n} )

 \frac{7}{81} (9n - 1 -  \frac{1}{ {10}^{n} } )

  \bold \color{green} \frac{7}{81} (9n - 1 +  {10}^{ - n} )

Hope it helps ......

Plz mark it as Brainliest.......

Similar questions