Math, asked by Anonymous, 3 days ago

Find the sum of the series,
(1) + (1+2) + (1+2+3) + ... to nth term.​

Answers

Answered by Anonymous
5

Given series :-

 \small \longrightarrow (1) + (1 + 2) + (1 + 2 + 3) + ... + (1 + 2 + 3 + ... + n)

Here, each term is a sum of n natural number. Therefore, for very general term of the series, we have a formula :

  • \boxed{ \tt{T_r= \dfrac{n(n+1)}{2}}}

________________________

Now, the sum of the series is the sum of all terms. That means,

\displaystyle \rm Sum\:of\:series = \sum\limits_{r=1}^n T_r

\displaystyle \rm Sum\:of\:series = \sum\limits_{r=1}^n \dfrac{r(r + 1)}{2}

\displaystyle \rm Sum\:of\:series = \sum\limits_{r=1}^n \dfrac{ {r}^{2} + r}{2}

\displaystyle \rm Sum\:of\:series =  \dfrac{1}2 \left[\sum\limits_{r=1}^n (r^2 +r) \right]

\displaystyle \rm Sum\:of\:series =  \dfrac{1}2 \left[\sum\limits_{r=1}^n (r^2) +\sum\limits_{r=1}^n (r) \right]

\displaystyle \rm Sum\:of\:series =  \dfrac{1}2 \left[ \dfrac{n(n + 1)(2n + 1)}{6} + \dfrac{n(n + 1)}{2}\right]

\displaystyle \rm Sum\:of\:series =  \dfrac{1}2 \left[ \dfrac{n(n + 1)(2n + 1)+3n(n+1)}{6} \right]

\displaystyle \rm Sum\:of\:series =  \dfrac{1}2 \left[ \dfrac{n(n + 1)[(2n + 1)+3]}{6} \right]

\displaystyle \rm Sum\:of\:series =  \dfrac{1}2 \left[ \dfrac{n(n + 1)[2n + 1+3]}{6} \right]

\displaystyle \rm Sum\:of\:series =  \dfrac{1}2 \left[ \dfrac{n(n + 1)[2n + 4]}{6} \right]

\displaystyle \rm Sum\:of\:series =  \dfrac{1}2 \left[ \dfrac{n(n + 1)2[n + 2]}{6} \right]

\displaystyle \rm Sum\:of\:series =  \dfrac{1}2 \left[ \dfrac{n(n + 1)\not2[n + 2]}{\not6} \right]

\displaystyle \rm Sum\:of\:series =  \dfrac{1}2 \left[ \dfrac{n(n + 1)(n + 2)}{3} \right]

\displaystyle \rm Sum\:of\:series =  \left[ \dfrac{n(n + 1)(n + 2)}{6} \right]

Therefore, the required sum of series is,

  • \boxed{  \mathfrak{\dfrac{n(n + 1)(n + 2)}{6}}}
Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given series is

\rm :\longmapsto\:1 + (1 + 2) + (1 + 2 + 3) +  -  -  - n \: terms

Let first find the nth term of the series.

Since,

\rm :\longmapsto\:a_1 = 1

\rm :\longmapsto\:a_2 = 1 + 2

\rm :\longmapsto\:a_3 = 1 + 2 + 3

So,

\rm \implies\:a_n = 1 + 2 + 3 +  -  -  + n

\rm \implies\:a_n = \displaystyle\sum_{n=1}^n \: n

 \red{\rm \implies\:a_n = \dfrac{n(n + 1)}{2}  = \dfrac{ {n}^{2}  + n}{2} }

So, Sum of the given series is given by

\rm :\longmapsto\:S_n = \displaystyle\sum_{n=1}^na_n

\rm :\longmapsto\:S_n = \displaystyle\sum_{n=1}^n \frac{ {n}^{2}  + n}{2}

\rm :\longmapsto\:S_n =\dfrac{1}{2}  \displaystyle\sum_{n=1}^n ( {n}^{2}  + n)

\rm :\longmapsto\:S_n = \dfrac{1}{2}\bigg(\dfrac{n(n + 1)(2n + 1)}{6}  + \dfrac{n(n + 1)}{2}  \bigg)

\rm :\longmapsto\:S_n = \dfrac{n(n + 1)}{4}\bigg(\dfrac{2n + 1}{3}  + 1\bigg)

\rm :\longmapsto\:S_n = \dfrac{n(n + 1)}{4}\bigg(\dfrac{2n + 1 + 3}{3}\bigg)

\rm :\longmapsto\:S_n = \dfrac{n(n + 1)}{4}\bigg(\dfrac{2n + 4}{3}\bigg)

\rm :\longmapsto\:S_n = \dfrac{n(n + 1)}{4}\bigg(\dfrac{2(n + 2)}{3}\bigg)

\rm \implies\:\boxed{ \tt{ \: S_n =  \frac{n(n + 1)(n + 2)}{6} \: }}

Result Used :-

\boxed{ \tt{ \: \displaystyle\sum_{n=1}^n \: n \:  =  \:  \frac{n(n + 1)}{2} \: }}

\boxed{ \tt{ \: \displaystyle\sum_{n=1}^n \:  {n}^{2}  \:  =  \:  \frac{n(n + 1)(2n + 1)}{6} \: }}

\boxed{ \tt{ \: \displaystyle\sum_{n=1}^n {n}^{3} =  {\bigg[\dfrac{n(n + 1)}{2} \bigg]}^{2}  \: }}

Similar questions