Math, asked by Dalfon, 1 day ago

Find the sum of the series 1/(x + 1) + 2/(x² + 1) + 2²/(x⁴ + 1) + - - - - - - + 2¹⁰⁰/(x²^¹⁰⁰ + 1)
(when x = 2)

a) 1 - 2¹⁰¹/(4¹⁰¹ - 1)
b) 1 - 2¹⁰⁰/(4¹⁰⁰ - 1)
c) 1 + 2¹⁰¹/(4¹⁰¹ - 1)
d) 1 + 2¹⁰⁰/(4¹⁰¹ - 1)

__________

→ Above series in the form latex:
\dfrac{1}{x + 1} + \dfrac{2}{ {x}^{2} + 1}+\dfrac{ {2}^{2}}{ {x}^{4} + 1} + \: - \: - \: - \: - \: + \dfrac{2^{100} }{{{x}^{2} }^{100}}

Don't spam.​

Answers

Answered by mathdude500
55

\large\underline{\sf{Solution-}}

Given series is

\rm \: \dfrac{1}{x + 1} + \dfrac{2}{ {x}^{2}  + 1} + \dfrac{ {2}^{2} }{ {x}^{4}  + 1} +  -  -  -  + \dfrac{ {2}^{100} }{ {x}^{200}  + 1}

Let assume that

\rm \: S = \dfrac{1}{x + 1} + \dfrac{2}{ {x}^{2}  + 1} + \dfrac{ {2}^{2} }{ {x}^{4}  + 1} +  -  - + \dfrac{ {2}^{100} }{ {x}^{200}  + 1} \\

can be rewritten as

\rm \:  - S = -  \dfrac{1}{x + 1} -  \dfrac{2}{ {x}^{2}  + 1} -  \dfrac{ {2}^{2} }{ {x}^{4}  + 1}  -  -  -  \dfrac{ {2}^{100} }{ {x}^{200}  + 1} \\

can be further rewritten as

\rm \: \dfrac{1}{x - 1} - S =\dfrac{1}{x - 1} -  \dfrac{1}{x + 1} -  \dfrac{2}{ {x}^{2}  + 1} -  \dfrac{ {2}^{2} }{ {x}^{4}  + 1}  -  -  -  \dfrac{ {2}^{100} }{ {x}^{200}  + 1} \\

\rm \: \dfrac{1}{x - 1} - S =\bigg(\dfrac{1}{x - 1} -  \dfrac{1}{x + 1}\bigg) -  \dfrac{2}{ {x}^{2}  + 1} -  \dfrac{ {2}^{2} }{ {x}^{4}  + 1}  -  -  -  \dfrac{ {2}^{100} }{ {x}^{200}  + 1} \\

\rm \: \dfrac{1}{x - 1} - S =\bigg(\dfrac{x + 1 - x + 1}{(x - 1)(x + 1)} \bigg) -  \dfrac{2}{ {x}^{2}  + 1} -  \dfrac{ {2}^{2} }{ {x}^{4}  + 1}  -  -  -  \dfrac{ {2}^{100} }{ {x}^{200}  + 1} \\

\rm \: \dfrac{1}{x - 1} - S =\dfrac{2}{ {x}^{2} - 1} -  \dfrac{2}{ {x}^{2}  + 1} -  \dfrac{ {2}^{2} }{ {x}^{4}  + 1}  -  -  -  \dfrac{ {2}^{100} }{ {x}^{200}  + 1} \\

\rm \: \dfrac{1}{x - 1} - S =\dfrac{2( {x}^{2}  + 1 -  {x}^{2}  + 1)}{({x}^{2} - 1)( {x}^{2}  + 1)} -  \dfrac{ {2}^{2} }{ {x}^{4}  + 1}  -  -  -  \dfrac{ {2}^{100} }{ {x}^{200}  + 1} \\

\rm \: \dfrac{1}{x - 1} - S =\dfrac{4}{{x}^{4} - 1} -  \dfrac{ {2}^{2} }{ {x}^{4}  + 1}  -  -  -  \dfrac{ {2}^{100} }{ {x}^{200}  + 1} \\

\rm \: \dfrac{1}{x - 1} - S =\dfrac{ {2}^{2} }{{x}^{4} - 1} -  \dfrac{ {2}^{2} }{ {x}^{4}  + 1}  -  -  -  \dfrac{ {2}^{100} }{ {x}^{200}  + 1} \\

So, on proceeding like this, we get

\rm \: \dfrac{1}{x - 1} - S =\dfrac{ {2}^{100} }{{x}^{200} - 1}   -  \dfrac{ {2}^{100} }{ {x}^{200}  + 1} \\

\rm \: \dfrac{1}{x - 1} - S =\dfrac{ {2}^{100}( {x}^{200} + 1 -  {x}^{200} + 1)}{({x}^{200} - 1)( {x}^{200} + 1)}   \\

\rm \: \dfrac{1}{x - 1} - S =\dfrac{ {2}^{100}(2)}{{x}^{400} - 1}   \\

\rm \: \dfrac{1}{x - 1} - S =\dfrac{ {2}^{101}}{{x}^{400} - 1}   \\

\rm\implies \:\rm \:S \:  =  \:  \dfrac{1}{x - 1} - \dfrac{ {2}^{101}}{{x}^{400} - 1}   \\

Now, On substituting x = 2, we get

 \:\rm \:S \:  =  \:  \dfrac{1}{2 - 1} - \dfrac{ {2}^{101}}{{2}^{400} - 1}   \\

 \:\rm \:S \:  =  \:  1 - \dfrac{ {2}^{101}}{{2}^{400} - 1}   \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

SHORT CUT TRICK

Sum of the series of the form

\sf\: \dfrac{1}{x + 1} + \dfrac{2}{ {x}^{2}  + 1} + \dfrac{ {2}^{2} }{ {x}^{4}  + 1} +  -  -  -  + \dfrac{ {2}^{n} }{ {x}^{2n}  + 1} = \dfrac{1}{x - 1} - \dfrac{ {2}^{n + 1} }{ {x}^{4n}  - 1} \\

Answered by Anonymous
0

Answer:

1 - 2¹⁰¹/(4¹⁰¹ - 1)

b) 1 - 2¹⁰⁰/(4¹⁰⁰ - 1)

c) 1 + 2¹⁰¹/(4¹⁰¹ - 1)

d) 1 + 2¹⁰⁰/(4¹⁰¹ - 1)

Step-by-step explanation:

hi dear how are u

Can be friends

dear can u msz me here

Similar questions