Math, asked by baldevkamboj9897, 1 year ago

Find the sum of the series sigma n-infinity (4/(4n-3) (4n+1))

Answers

Answered by pulakmath007
15

SOLUTION

TO DETERMINE

The sum of the series

\displaystyle  \sf{\sum\limits_{n=1}^{ \infty }  \: \frac{4}{(4n - 3)(4n + 1)}  }

CONCEPT TO BE IMPLEMENTED

The infinite series

\displaystyle  \sf{\sum\limits_{n=1}^{ \infty }  \:u_n }

is said to be convergent or divergent according as the sequence \displaystyle   \sf\{  \: s_n \} is convergent or divergent

Where \displaystyle   \sf{\: s_n  = u_1 + u_2 + .... +u_n }

\displaystyle   \sf\{  \: s_n \} is called partial sums of the series \displaystyle   \sf{  \sum \: u_n }

If \displaystyle   \sf{ lim  \: s_n  = s}

Then s is called sum of the series \displaystyle   \sf{  \sum \: u_n }

EVALUATION

Here the given series is

\displaystyle  \sf{\sum\limits_{n=1}^{ \infty }  \: \frac{4}{(4n - 3)(4n + 1)}  }

Let

\displaystyle  \sf{\sum\limits_{n=1}^{ \infty }  \:u_n }

be the given series

Then

\displaystyle  \sf{  \:u_n  =  \frac{4}{(4n - 3)(4n + 1)} }

 \therefore \:  \displaystyle  \sf{  \:u_n  =  \frac{(4n + 1) - (4n - 3)}{(4n - 3)(4n + 1)} }

 \therefore \:  \displaystyle  \sf{  \:u_n  = \frac{1}{4n - 3} -  \frac{1}{4n + 1}  }

Now \displaystyle   \sf{\: s_n  = u_1 + u_2 + .... +u_n }

\displaystyle    \sf{\implies \: s_n  = 1 -  \frac{1}{5}  +  \frac{1}{5} -  \frac{1}{13}  +  \frac{1}{13} - ..... -  \frac{1}{4n + 1}   }

\displaystyle    \sf{\implies \: s_n  = 1  -  \frac{1}{4n + 1}   }

 \therefore \:  \: \displaystyle   \sf{ lim  \: s_n  = 1}

Hence the given series is convergent and the sum of the series is 1

FINAL ANSWER

The sum of the given series = 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Prove that - evey cauchy sequence is bounded.

https://brainly.in/question/26180669

2. If u=y2/2x , v = x/2+y2/2x find ∂(u,v)/ ∂(x,y).

https://brainly.in/question/25724416

Similar questions