Math, asked by mk02032004, 6 months ago

Find the sum of the series
(1 + x) + (1 + x + {x}^{2}) + (1 + x +  {x}^{2}  +  {x}^{3} ) + ............

Answers

Answered by Anonymous
19

 \bf \large \bold{Hola! }

GiveN :

</u><u>\sf(1 + x) + (1 + x +  {x}^{2} ) + (1 + x +  {x}^{2}  +  {x}^{3} ) + ...

__________________________________________

To FinD :

→ Sum of the series

__________________________________________

RequireD FormulA :

 \sf \: S_n=a+ar + a {r}^{2} +  ... =  \frac{a( {r}^{n} - 1) }{(r - 1)}  \\

__________________________________________

SolutioN :

 \sf \: (1 + x) + (1 + x + {x}^{2}) + (1 + x + {x}^{2} + {x}^{3} ) + ...

 \implies \sf \:  \frac{1 \times (x - 1)}{(x - 1)}  +  \frac{1( {x}^{2} - 1) }{(x - 1)}  +  \frac{1( {x}^{3} - 1) }{(x - 1)}  + ... \\

 \implies \sf \:  \frac{1}{(x - 1)}  \{x - 1 +  {x}^{2}  - 1 +   {x}^{3}  - 1 + ... \} \\

 \implies \: \sf  \frac{1}{(x - 1)}  \{(x +  {x}^{2}  +  {x}^{3}  + ... +  {x}^{n}) - n  \}  \\

 \implies \sf \:  \frac{1}{(x - 1)} \{ \frac{x( {x}^{n}  - 1)}{(x - 1)}  - n \} \\

 \implies \sf \:   { \underline{\boxed{  \sf\ \frac{( {x}^{n  + 1}  - x)}{(x - 1)^{2} }  - </u><u>\</u><u>f</u><u>r</u><u>a</u><u>c</u><u>{</u><u>n}</u><u>{</u><u>x-1}</u><u>  }}}\\

_____________________________________________

HAVE A WONDERFUL DAY...

Similar questions