Math, asked by guptaananya2005, 1 day ago

Find the sum of the series

C_0 +  \frac{C_1}{2}  +  \frac{C_2}{3}  +  -  -  -  +  \frac{C_n}{n + 1}

Please give proper explanation​

Answers

Answered by mathdude500
7

 \green{\large\underline{\sf{Solution-}}}

From Binomial expansion, we have

\rm :\longmapsto\: {(1 + x)}^{n} = C_0 + C_1x + C_2 {x}^{2} +  -  -  -  + C_n {x}^{n}

On integrating both sides w. r. t. x, between the limits x = 0 and x = 1, we get

\rm :\longmapsto\: \displaystyle\int_0^1\rm {(1 + x)}^{n}dx = \displaystyle\int_0^1\rm \bigg[C_0 + C_1x + C_2 {x}^{2} +  -  -  -  + C_n {x}^{n}\bigg]

We know,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int\rm k \: f(x) \: dx \:  =  \: k\displaystyle\int \: f(x) \: dx \: }}}

and

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int\rm  {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  + c\: }}}

So, using this we get

 \rm \: \bigg[\dfrac{ {(1 + x)}^{n + 1} }{n + 1} \bigg]_0^1 = C_0\bigg[\dfrac{x}{1} \bigg]_0^1 + C_1\bigg[\dfrac{ {x}^{2} }{2} \bigg]_0^1 +  -  -  -  + C_n\bigg[\dfrac{ {x}^{n + 1} }{n + 1} \bigg]_0^1

 \rm \: \dfrac{ {2}^{n + 1} }{n + 1}  - \dfrac{1}{n + 1}  = C_0(1 - 0) + \dfrac{C_1}{2}(1 - 0) + \dfrac{C_2}{3}(1 - 0) +  -  + \dfrac{C_n}{n + 1}(1 - 0)

 \rm \: \dfrac{ {2}^{n + 1} - 1}{n + 1}  = C_0 + \dfrac{C_1}{2} + \dfrac{C_2}{3}+  -  + \dfrac{C_n}{n + 1}

Hence,

 \red{\boxed{\tt{ \rm \:C_0 + \dfrac{C_1}{2} + \dfrac{C_2}{3}+  - -  -   + \dfrac{C_n}{n + 1} = \dfrac{ {2}^{n + 1} - 1}{n + 1}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\tt{ {(1 + x)}^{n} = C_0 + C_1x + C_2 {x}^{2} +  -  -  -  + C_n{x}^{n}}}

\boxed{\tt{ {(1 - x)}^{n} = C_0 - C_1x + C_2 {x}^{2} +  -  -  -  +  {( - 1)}^{n} C_n{x}^{n}}}

\boxed{\tt{ C_0 + C_1 + C_2 +  -  -  -  + C_n =  {2}^{n}}}

\boxed{\tt{ C_0 - C_1 + C_2 +  -  -  -  +  {( - 1)}^{n} C_n =  0}}

\boxed{\tt{ C_0 + C_2 + C_4 +  -  -  -  = C_1 + C_3 + C_5 +  -  -  -  =  {2}^{n - 1}}}

Similar questions