Math, asked by khushi15686, 18 days ago

Find the sum of the series

 \frac{1}{2} +  \frac{1}{6} +  \frac{1}{12} +  -  -  -  - n \: terms

Answers

Answered by mathdude500
17

\large\underline{\sf{Solution-}}

Given series is

\rm \: \dfrac{1}{2}  + \dfrac{1}{6}  + \dfrac{1}{12}  +  -  -  -  - n \: terms \\

can be further rewritten as

\rm \:  = \dfrac{1}{1 \times 2}  + \dfrac{1}{2 \times 3}  + \dfrac{1}{3 \times 4}  +  -  -  -  - n \: terms \\

As 1, 2, 3, ... are in AP

So, nᵗʰ term = 1 + (n - 1)×1 = 1 + n - 1 = n

Also, 2, 3, 4, ... are in AP

So, nᵗʰ term = 2 + (n - 1)×1 = 2 + n - 1 = n + 1

So, above series can be rewritten as

\rm \:  = \dfrac{1}{1 \times 2}  + \dfrac{1}{2 \times 3}  + \dfrac{1}{3 \times 4}  +  -  -  -  - + \dfrac{1}{n(n + 1)}  \\

can be further rewritten as

\rm \:  = \dfrac{2 - 1}{1 \times 2}  + \dfrac{3 - 2}{2 \times 3}  + \dfrac{4 - 3}{3 \times 4}  +  -  -  -  - + \dfrac{n + 1 - n}{n(n + 1)}  \\

\rm \:  = \bigg(1 - \dfrac{1}{2} \bigg)  + \bigg(\dfrac{1}{2}  - \dfrac{1}{3}  \bigg)  + \bigg(\dfrac{1}{3} - \dfrac{1}{4} \bigg)  +  -  -  + \bigg(\dfrac{1}{n}  - \dfrac{1}{n + 1}  \bigg)

\rm \:  = 1 - \cancel \dfrac{1}{2}  + \cancel \dfrac{1}{2}  - \cancel \dfrac{1}{3} +\cancel  \dfrac{1}{3} - \cancel \dfrac{1}{4} +  -  -  +\cancel \dfrac{1}{n}  - \dfrac{1}{n + 1} \\

\rm \:  = 1   - \dfrac{1}{n + 1} \\

\rm \:  = \dfrac{n + 1 - 1}{n + 1} \\

\rm \:  = \dfrac{n}{n + 1} \\

Hence,

\boxed{\rm{\rm\implies \dfrac{1}{2}  + \dfrac{1}{6}  + \dfrac{1}{12}  +  -  -  - n \: terms  =  \frac{n}{n + 1} \: }}  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle\sum_{k=1}^n\rm k \:  =  \: \dfrac{n(n + 1)}{2} }\\ \\ \bigstar \: \bf{\displaystyle\sum_{k=1}^n\rm  {k}^{2}  \:  =  \: \dfrac{n(n + 1)(2n + 1)}{6}  }\\ \\ \bigstar \: \bf{\displaystyle\sum_{k=1}^n\rm  {k}^{3}  \:  =  \: \bigg(\dfrac{n(n + 1)}{2} \bigg)^{2} }\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by XxitzZBrainlyStarxX
6

[Refer to the above attachment for your answer]

Hope you have satisfied.

Attachments:
Similar questions