Math, asked by Anonymous, 5 days ago

Find the sum of the series upto n terms whose nth term is given by,
2n² - 3n + 5​

Answers

Answered by anindyaadhikari13
6

\textsf{\large{\underline{Solution}:}}

Given That:

 \rm: \longmapsto T_{n}  = 2 {n}^{2}  - 3n + 5

We have to find out the sum of the series.

\displaystyle\rm: \longmapsto S _{n}  =  \sum^{n}_{k = 1}  T_{k}

\displaystyle\rm: \longmapsto S _{n}  =  \sum^{n}_{k = 1} \big(2 {k}^{2}  - 3k + 5 \big)

\displaystyle\rm: \longmapsto S _{n}  =  \sum^{n}_{k = 1}2 {k}^{2}  - \sum^{n}_{k = 1} 3k + \sum^{n}_{k = 1}5

\displaystyle\rm: \longmapsto S _{n}  =  2\sum^{n}_{k = 1}{k}^{2}  - 3\sum^{n}_{k = 1}k +5n

We know that:

\displaystyle\rm: \longmapsto \sum^{n}_{k = 1}{k}^{2} =  \dfrac{n(n + 1)(2n + 1)}{6}

\displaystyle\rm: \longmapsto \sum^{n}_{k = 1}{k} =  \dfrac{n(n + 1)}{2}

Therefore:

\displaystyle\rm: \longmapsto S _{n}  =  2 \cdot \dfrac{n(n + 1)(2n + 1)}{6}  - 3\cdot \dfrac{n(n + 1)}{2}  +5n

\displaystyle\rm: \longmapsto S _{n}  =  \dfrac{2n(n + 1)(2n + 1)}{6} -  \dfrac{9n(n + 1)}{6}  +  \frac{30n}{6}

\displaystyle\rm: \longmapsto S _{n}  =  \dfrac{2n(n + 1)(2n + 1) - 9n(n + 1) + 30n}{6}

\displaystyle\rm: \longmapsto S _{n}  =  \dfrac{n(n + 1) \{2(2n + 1) - 9 \}+ 30n}{6}

\displaystyle\rm: \longmapsto S _{n}  =  \dfrac{n(n + 1) \{4n +2 - 9 \}+ 30n}{6}

\displaystyle\rm: \longmapsto S _{n}  =  \dfrac{n(n + 1)(4n  - 7 )+ 30n}{6}

\displaystyle\rm: \longmapsto S _{n}  = \dfrac{n}{6} \{  (n + 1)(4n  - 7 )+ 30 \}

\displaystyle\rm: \longmapsto S _{n}  = \dfrac{n}{6} \{4 {n}^{2} - 7n + 4n - 7 + 30 \}

\displaystyle\rm: \longmapsto S _{n}  = \dfrac{n}{6} \{4 {n}^{2} - 3n-23\}

\displaystyle\rm: \longmapsto S _{n}  = \dfrac{n}{6}(4 {n}^{2} - 3n-23)

Which is our required answer.

\textsf{\large{\underline{More To Know}:}}

 \displaystyle1. \: \: \rm \sum^{n}_{i = 1}k = kn

 \displaystyle2. \: \: \rm \sum^{n}_{i = 1}i = \dfrac{n(n + 1)}{2}

 \displaystyle3. \: \: \rm \sum^{n}_{i = 1} {i}^{2} = \dfrac{n(n + 1)(2n + 1)}{6}

 \displaystyle4. \: \: \rm \sum^{n}_{i = 1} {i}^{3} = \bigg( \dfrac{n(n + 1)}{2} \bigg)^{2}


anindyaadhikari13: Thanks for the Brainliest :)
Similar questions