Math, asked by ISalmonella, 4 months ago

Find the sum of two numbers which are in the Ratio 4:5 and their sum is 184 .​

Answers

Answered by ItzMissKomal
0

Answer:

Let the numbers be x and (184-x)

3

1

x−

7

184−x

=8

⇒x=72

Thus the numbers are 72 and 112 Hence the smaller number is 72

Step-by-step explanation:

HOPE This HELPS YOU☺☺

Answered by thebrainlykapil
39

\large\underline{ \underline{ \sf \maltese{ \: Correct \: Question:- }}}

  • Find the sum of two numbers which are in the Ratio 4:5 and their sum is 180.

 \\

\large\underline{ \underline{ \sf \maltese{ \: Given :- }}}

  • Ratio of the Numbers = 4:5
  • Sum of the Numbers = 180

 \\

\large\underline{ \underline{ \sf \maltese{ \: Assume:- }}}

  • Let the First Number be 4x
  • Let the Second Number be 5x

 \\

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\begin{gathered}\begin{gathered}\underline{\boldsymbol{According\: to \:the\: Question :}} \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\:4x \:  +  \: 5x \:  =  \: 180    }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\bf{4x \:  +  \: 5x \:  =  \: 180  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{9x \:  =  \: 180  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{x \:  =  \:  \frac{180}{9}   }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{x \:  =  \: \cancel\green{ \frac{180}{9}}   }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{x \:  =  \:  20  }}

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{x \: = \: 20    }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Numbers:-

  • First Number = 4x = 4 × 20 = { \boxed{\: 80}}
  • Second Number = 5x = 5 × 20 = { \boxed{\: 100}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \ : Verification:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\:4x \:  +  \: 5x \:  =  \: 180    }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\bf{4 \times 20\:  +  \: 5 \times 20\:  =  \: 180  }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{80 \: + \: 100 \:  =  \: 180  }} \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{180\: = \: 180    }}}

Hence, Verified

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ First \: Number \: = \underline {\underline{ 80}}}\\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ Second\: Number \: = \underline {\underline{ 100}}}\\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions