Math, asked by mansingsindhav63, 7 months ago

find the sum of zeroes and product of zeroes x2+1/6x-2=0​

Answers

Answered by SmartDiva
0

Answer:

This is the answer to your question. Hope this will help you...Please mark me the Brainliest

Attachments:
Answered by Anonymous
4

Given:-

\sf{Polynomial = x^2 + \dfrac{1x}{6} - 2 = 0 }

To find:-

  • Sum of zeroes
  • Product of zeroes

Solution:-

\sf{x^2 + \dfrac{1x}{6} - 2 = 0}

By taking LCM,

= \sf{\dfrac{6x^2 + 1x - 12}{6} = 0}

\sf{\implies 6x^2 + x - 12 = 0\times 6}

\sf{\implies 6x^2 + x - 12 = 0}

By splitting the middle term,

= \sf{6x^2 + 9x - 8x - 12 = 0}

\sf{\implies 3x(2x + 3) - 4(2x+3) = 0}

\sf{\implies (2x+3)(3x-4) = 0}

Either,

\sf{2x+3=0}

\sf{\implies 2x = -3}

\sf{\implies x = \dfrac{-3}{2}}

Or,

\sf{3x-4=0}

\sf{\implies 3x = 4}

\sf{\implies x = \dfrac{4}{3}}

Now,

\sf{Let \:\alpha = \dfrac{-3}{2} \:and\:\beta = \dfrac{4}{3}}

Therefore,

\sf{Sum \:of\: zeroes = \alpha + \beta}

= \sf{\dfrac{-3}{2}+\dfrac{4}{3}}

= \sf{\dfrac{-9+8}{6}}

= \sf{\dfrac{-1}{6}}

\sf{\underline{\therefore Sum\:of\:zeroes} = \dfrac{-1}{6}}

\sf{Product\:of\:zeroes = \alpha\times \beta}

= \sf{\dfrac{-3}{2}\times \dfrac{4}{3}}

= \sf{-2}

\sf{\underline{\therefore Product\:of\:zeroes} = -2}

Verification:-

\sf{Sum\:of\:zeroes = \dfrac{-Coefficient\:of\:x}{Coefficient\:of\:x^2}}

= \sf{\dfrac{-1}{6} = \dfrac{-1}{\dfrac{6}{1}}}

= \sf{\dfrac{-1}{6} = \dfrac{-1}{6}\:\:[Verified]}

\sf{Product\:of\:zeroes = \dfrac{Constant\:term}{Coefficient\:of\:x^2}}

= \sf{-2 = \dfrac{-2}{1}}

= \sf{-2=-2\:\:[Verified]}

Similar questions