Math, asked by gourav566, 7 months ago

find the sum of zeroes and product of zeroes x2+1/6x-2=0​

Answers

Answered by Anshrah111
4

Answer:

X² + 1/6x - 2 = 0

Writing 12 on both sides to make 1/6 as integer from fraction.

(X² + 1/6 - 2)12 = 0x12

X² + 2x - 24 = 0. factors of 24 are 1x24, 2x12, 3x8, 4x6

Taking +6x and -4x

X² + 6x - 4x - 24

x(x + 6) -4 (x + 6)

(x + 6)(x - 4)

Hence the of the polynomial are -6 and +4

product of zeroes = -24

Step-by-step explanation:

Hope this may help you

Give me hearts and stars

Mark me as brainliest

Answered by Anonymous
37

\sf\underline{\green{\:\:\: Given:-\:\:\:}} \\ \\

\sf{Polynomial = x^2 + \dfrac{1x}{6} - 2 = 0 }

 \\

\sf\underline{\green{\:\:\:To \:Find:-\:\:\:}} \\ \\

• Sum of zeroes

• Product of zeroes

 \\

\sf\underline{\green{\:\:\: Solution:-\:\:\:}} \\ \\

\underline{\:\textsf{ We have  :}}⠀⠀⠀⠀⠀

\dashrightarrow \sf{x^2 + \dfrac{1x}{6} - 2 = 0}

 \\

\dashrightarrow \sf{\dfrac{6x^2 + 1x - 12}{6} = 0}

 \\

\dashrightarrow \sf{ 6x^2 + x - 12 = 0\times 6}

 \\

\dashrightarrow \sf{6x^2 + x - 12 = 0}

 \\

\dashrightarrow \sf{6x^2 + 9x - 8x - 12 = 0}

 \\

\dashrightarrow \sf{ 3x(2x + 3) - 4(2x+3) = 0}

 \\

\sf{\dashrightarrow  (2x+3)(3x-4) = 0}

 \\

\sf Hence :-

\sf{2x+3=0}

\sf{\dashrightarrow  2x = -3}

\sf{\dashrightarrow  x = \dfrac{-3}{2}}

 \\

\sf OR,

 \\

\dashrightarrow \sf{3x-4=0}

\sf{ \dashrightarrow 3x = 4}

\sf{\dashrightarrow x = \dfrac{4}{3}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀⠀

\sf Now

\sf{Let \:\alpha = \dfrac{-3}{2} \:and\:\beta = \dfrac{4}{3}}

 \\

\sf{Sum \:of\: zeroes = \alpha + \beta}

\leadsto \sf{\dfrac{-3}{2}+\dfrac{4}{3}}

\leadsto \sf{\dfrac{-9+8}{6}}

\leadsto \sf{\dfrac{-1}{6}}

 \\

\sf{Product\:of\:zeroes = \alpha\times \beta}

\leadsto \sf{\dfrac{-3}{2}\times \dfrac{4}{3}}

\leadsto \sf{-2}

 \\

\;\;\underline{\textbf{\textsf{ Hence-}}}

 \\

\sf{\underline{\therefore Sum\:of\:zeroes} = \dfrac{-1}{6}}

\sf{\underline{\therefore Product\:of\:zeroes} = -2}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions