Math, asked by joanneymx, 1 year ago

Find the sum S defined by
S = \sum_{n=1}^{20}(3n - 1 / 2)


joanneymx: in the arithmetic sequence

Answers

Answered by shadowsabers03
1

\begin{aligned}S\ \ &=\sum_{n=1}^{20}\frac{3n-1}{2}\\ \\ \Longrightarrow\ \ &\frac{1}{2}\sum_{n=1}^{20}3n-1\\ \\ \Longrightarrow\ \ &\frac{1}{2}\sum_{n=1}^{20}3n-\frac{1}{2}\sum_{n=1}^{20}1\\ \\ \Longrightarrow\ \ &\frac{3}{2}\sum_{n=1}^{20}n-\frac{1}{2}\sum_{n=1}^{20}1\end{aligned}

\begin{aligned}\Longrightarrow\ \ &\frac{3}{2}\bigg(1+2+3+...+20\bigg)-\frac{1}{2}\bigg(\underbrace{1+1+1+...+1}_{20}\bigg)\\ \\ \Longrightarrow\ \ &\frac{3}{2}\cdot\frac{20\cdot 21}{2}-\frac{1}{2}\cdot 20\\ \\ \Longrightarrow\ \ &315-10\\ \\ \Longrightarrow\ \ &\large\text{$\bold{305}$}\end{aligned}

\textsf{Hence,}\\ \\ \\ \Large\boxed{\textbf{S=305}}


joanneymx: but the answer is 1380
Similar questions