Math, asked by 20freelance18, 7 months ago

Find the sum to infinite terms of the series 1+5x+9x^2+13x^3+..... Where |x| <1

Answers

Answered by MaheswariS
18

\underline{\textsf{Given:}}

\textsf{Series is}

\mathsf{1+5x+9x^2+13x^3+.......}

\underline{\textsf{To find:}}

\textsf{Sum to infinite of the given series}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{1+5x+9x^2+13x^3+.......}

\textsf{clearly, it is an arithmetico-geometric series}

\textsf{with a=1, r=x and d=4}

\textsf{Then,}

\textsf{Sum to infinite terms of the series}

\mathsf{S_{\infty}=\dfrac{a}{1-r}+\dfrac{dr}{(1-r)^2}}

\mathsf{S_{\infty}=\dfrac{1}{1-x}+\dfrac{4x}{(1-x)^2}}

\mathsf{S_{\infty}=\dfrac{1-x+4x}{(1-x)^2}}

\implies\boxed{\mathsf{S_{\infty}=\dfrac{3x+1}{(1-x)^2}}}

\underline{\textsf{Answer:}}

\textsf{The sum t infinite terms of the given series is}\;\mathsf{\dfrac{3x+1}{(1-x)^2}}

Answered by pulakmath007
74

SOLUTION

TO DETERMINE

The sum to infinite terms of the series

 \sf{ 1+ 5x + 9 {x}^{2}   + 13 {x}^{3} + ........ \:  \: }

 \sf{  \: where \:  \:  |x|  &lt; 1\: }

EVALUATION

Let

 \sf{S =  1+ 5x + 9 {x}^{2}   + 13 {x}^{3} + ........  } - -  -  - (1)

Multiplying both sides of Equation (1) by x we get

 \sf{Sx =  x+ 5 {x}^{2}  + 9 {x}^{3}   + 13 {x}^{4} + ........  } - -  -  - (2)

Equation (1) - Equation (2) gives

 \sf{S(1 - x )= 1 +  4x+ 4{x}^{2}  + 4 {x}^{3}    + ........  }

 \sf{S(1 - x ) + 3= 4 +  4x+ 4{x}^{2}  + 4 {x}^{3}    + ........  }

Now

 \sf{ 4 +  4x+ 4{x}^{2}  + 4 {x}^{3}    + ........  }

is a Geometric infinite series with first term = 4 and Common ratio = x with |x|< 1

So

 \displaystyle \sf{S(1 - x ) + 3=  \frac{4}{1 - x} }

  \implies\displaystyle \sf{S(1 - x )=  \frac{4}{1 - x}  - 3}

  \implies\displaystyle \sf{S(1 - x )=  \frac{4 - 3 + 3x}{1 - x}  }

  \implies\displaystyle \sf{S(1 - x )=  \frac{ 3x + 1}{1 - x}  }

  \implies\displaystyle \sf{S=  \frac{ 3x + 1}{ {(1 - x)}^{2} }  }

FINAL ANSWER

\displaystyle \sf{1+ 5x + 9 {x}^{2}   + 13 {x}^{3} + .....=  \frac{ 3x + 1}{ {(1 - x)}^{2} }  }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

In a triangle, prove that

(b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions