Math, asked by PragyaTbia, 1 year ago

Find the sum to infinity of the given arithmetico-geometric sequences.
1,\frac{-3}{2}, \frac{5}{4}, \frac{-7}{8}, \frac{9}{16}, \frac{-11}{32},...

Answers

Answered by MaheswariS
1

Answer:

Sum of the given AGP is

\bf\,S_{\infty}=\frac{2}{9}

Step-by-step explanation:

Given AGP is

1,\frac{-3}{2}, \frac{5}{4}, \frac{-7}{8}, \frac{9}{16}, \frac{-11}{32},..."

Here

a=1

d=2

r=\frac{-1}{2}

\text{The sum of infinite AGP is }

\boxed{\bf\,S_{\infty}=\frac{a}{1-r}+\frac{d\,r}{(1-r)^2}}

\implies\,S_{\infty}=\frac{1}{1+\frac{1}{2}}+\frac{2(\frac{-1}{2})}{(1+\frac{1}{2})^2}

\implies\,S_{\infty}=\frac{1}{\frac{3}{2}}+\frac{(-1)}{(\frac{3}{2})^2}

\implies\,S_{\infty}=\frac{2}{3}+\frac{(-1)}{\frac{9}{4}}

\implies\,S_{\infty}=\frac{2}{3}-\frac{4}{9}

\implies\,S_{\infty}=\frac{6-4}{9}

\therefore\boxed{S_{\infty}=\frac{2}{9}}

Answered by Alcaa
0

The sum to infinity of the given series is  \frac{2}{9}.

Step-by-step explanation:

We are given the following arithmetico-geometric sequence below;

1,\frac{-3}{2} ,\frac{5}{4} ,\frac{-7}{8} ,\frac{9}{16} ,\frac{-11}{32} ,........

As we know that the formula for Sum to infinity of an arithmetico-geometric series is given by;

                S_\infty = \frac{a}{1-r} +\frac{dr}{(1-r)^{2} }  , where \left | r \right | < 1

Here, a = first term of the series = 1

          r = common ratio = \frac{-1}{2}   {dividing 1st term and 2nd term}

          d = constant increment in the numerator = 2

This series is a mixture of arithmetic and geometric series.

Now, putting the values in the formula we get;

                  S_\infty = \frac{1}{1-(\frac{-1}{2}) } +\frac{2 \times (\frac{-1}{2}) }{(1-(\frac{-1}{2}))^{2} }

                  S_\infty = \frac{1}{1+\frac{1}{2} } +\frac{(-1) }{(1+\frac{1}{2})^{2} }

                  S_\infty = \frac{2}{3 } +\frac{(-1) }{(1+\frac{1}{4}+1) }

                  S_\infty = \frac{2}{3 } -\frac{1 }{\frac{9}{4} }

                  S_\infty = \frac{2}{3 } -\frac{4 }{9 }

                  S_\infty = \frac{6-4}{9 }  =  \frac{2}{9}.

Hence, the sum to infinity of the given series is  \frac{2}{9}.

Similar questions