find the sum to n term 8+88+888+_ _ _ _
Answers
Answered by
1
Answer:
8888
Step-by-step explanation:
Answered by
9
Answer:
8/9 {10(10^n-1)/9} - n
Step-by-step explanation:
8+88+888+8888+88888 .................................n
Taking 8 as common
8(1+11+111+1111+11111+....................................................................n)
Multiply and divide by 9
8/9 (9+99+999+9999+99999+.............................n)
8/9 {(10-1)+(100-1)+(1000-1)+(10000-1)+(10000-1)...............................................n}
8/9 {(10+100+1000+10000+100000)-(1+1+1+1+1................n)}
(10+100+1000+10000+100000) is a GP
a=10 , r = 100/10 = 10
When r>1
Sn = a (r^n - 1) / (r-1)
Sn= 10 (10^n - 1) / (10-1)
Sn = 10(10^n - 1) / 9
Now replacing the value
8/9 {10(10^n-1)/9} - n
Plz like and follow if this answer helped you
Similar questions