Math, asked by kevinfurtado, 10 months ago

Find the sum to n terms: .4 + .44 + .444​

Answers

Answered by Anonymous
7

Given \:  \: Question \:  \: Is \:  \\  \\ 0.4 + 0.44 + 0.444  + ... + n \\  \\ Answer \:  \:  \\  \\ let \:  \:  \ \\ s = 0.4 + 0.44 + 0.444 + 0.444 + ... \\  the \: above \: equation \: can \: be \: re \: write \: as \\  \\ s =  \frac{4}{10}  +  \frac{44}{100}  +  \frac{444}{1000}  +  \frac{4444}{10000}  + ... \\  \\ s = 4( \frac{1}{10}  +  \frac{11}{100}  +  \frac{111}{1000}  +  \frac{1111}{10000}  + ...)  \\  \\ s =  \frac{4}{9} ( \frac{9}{10}  +  \frac{99}{100}  +  \frac{999}{1000}  +  \frac{9999}{10000}  + ...) \\  \\ s =  \frac{4}{9} ((1 -  \frac{1}{10} ) + (1 -  \frac{1}{100} ) + (1 -  \frac{1}{1000} ) + (1 -  \frac{1}{10000} ) + ...) \\  \\ s =  \frac{4}{9} (1 + 1 + 1 + 1 + ...)  - \frac{4}{9} ( \frac{1}{10}  +  \frac{1}{100}  +  \frac{1}{1000}  +  \frac{1}{10000}  + ...) \\  \\ s =  \frac{4n}{9}  -  \frac{4}{90} ( 1 + \frac{1}{10}  +  \frac{1}{100}  +  \frac{1}{1000}  + ...) \\  \\ s =  \frac{4n}{9}  -  \frac{2}{45} ( \frac{1(1 -  \frac{1}{10 {}^{n} } )}{(1 -  \frac{1}{10} )} ) \\ becoz \:  \: the \:  \: above \:  \: series \: is \:  \: in \:  \: g.p \\  \\ s =  \frac{4n}{9}  -  \frac{2 \times 10}{45} ( \frac{10 {}^{n}  - 1)}{10 {}^{n}  \times 9} ) \\  \\ s =  \frac{4n}{9}  -  \frac{20}{405} ( \frac{(10 {}^{n} - 1) }{10 {}^{n} } ) \\  \\ s =  \frac{4n}{9}  -  \frac{4}{81} ( \frac{(10 {}^{n} - 1) }{10 {}^{n} } ) \\  \\ Therefore \:  \: the \:  \: sum \:  \: of \:  \: series \:  \:  \\ 0.4 + 0.44 + 0.444 + 0.4444 + ... + n \\ is \:  \:  \:  \:  \:  \frac{4n}{9}  -  \frac{4}{81} ( \frac{(10 {}^{n} - 1) }{10 {}^{n} } )

Similar questions