Math, asked by topper5795, 1 year ago

Find the sum to n terms of 0.5 ++ 0.55 ++ 0.555 ………​

Answers

Answered by momsprincess
0

Answer:

here is ur answer

Step-by-step explanation:

1.605

Answered by Anonymous
13

 \purple{ \mathtt{ \underline{ \huge \fbox{ \underline{S} \:  \underline{o} \:  \underline{l}  \: \underline{u} \:  \underline{t}  \: \underline{i}  \: \underline{o}  \: \underline{n} : \: </p><p>}}}}

This is not a GP ., however , we can relate it to a GP by writing the terms as

 \sf \hookrightarrow  S_{n} =  0.5 + 0.55 + 0.555 + ..... + n \: terms \\  \\ \sf \hookrightarrow S_{n} = 5(0.1 + 0.11 + 0.111 + ..... + n \: terms) \\  \\ \mathtt{  Multiplying  \: numerator \:  and  \: denominator \:  by \:  9  \: ,  \: we \:  get}</p><p>\\  \\ \sf \hookrightarrow  S_{n} = \frac{5}{9} (0.9 + 0.99 + 0.999 + ..... + n \: terms) \\  \\  \sf \hookrightarrow S_{n} = \frac{5}{9}  \bigg \{(1 - 0.1)(1  - 0.01) + (1 - 0.001).....n \: terms) \bigg \} \\  \\  \sf \hookrightarrow S_{n} =  \frac{5}{9} (1 + 1 + 1 + ...... + n \: terms) - (0.1 + 0.01 + 0.001 + ..... + n \: terms) \\  \\ \sf \hookrightarrow  S_{n} = \frac{5}{9}  \bigg(n - \frac{ \frac{1}{10}(1 -  \frac{1}{ {10}^{n} } ) }{1 -  \frac{1}{10} } \bigg)  \\  \\ \sf \hookrightarrow S_{n} =  \frac{5}{9}  \bigg(n -  \frac{ \frac{1}{10}(1 -  \frac{1}{ {10}^{n} } ) }{ \frac{9}{10} } \bigg ) \\  \\  \sf \hookrightarrow S_{n} =  \frac{5}{9}  \bigg(n -   \frac{1}{ \cancel{10}}(1 -  \frac{1}{ {10}^{n} } )  \times  \frac{\cancel{10} }{9} \bigg)  \\  \\  \sf \hookrightarrow S_{n} =   \frac{5}{9}  \bigg(n -   \frac{1}{9}(1 -  \frac{1}{ {10}^{n} } )   \bigg)

Hence , the sum of the sequence 0.5 , 0.55 , 0.555 ......... is

 \large \sf \fbox{S_{n} =   \frac{5}{9}  \bigg(n -   \frac{1}{9}(1 -  \frac{1}{ {10}^{n} } )   \bigg) }

Similar questions
Hindi, 1 year ago