Find the sum to n terms of the following series :
(i) (1) + (1+3)+(1+3+32) + .
(ii) 1 + 3 + 7 + 15 +31 + ...
(iii) 3 + 7 + 14 + 27 +52 + ...
Answers
Answered by
2
Solution:-
ii) 1+3+7+15+32+......
we have to find the sum of nth term of the series
Let S1=1+3+7+15+33+.....
shift one digit forward and then subtract the given terms
S1=1+3+7+15+31+....+(n-1)th+nth term.......i)
S1=. 1+3+7+ 15+....+(n-2)th+(n-1)th +(n)th term....ii)
subtracting equation ii) from I) we get
0=1+(2+4+8+16+........+(n-1)term) -nth term
nth term=1+(2+4+8+16+......+(n-1)term)
Tn=1+2×(2^(n-1) -1)/1
Tn=1+2^n-2
Tn=2^n-1
this will be nth term of the series
now,
sum upto n terms=2×(2^n-1)/(2-1) -n
=2(n+1) -(2+n)
Similar questions