Math, asked by ronitrajkatoch, 10 months ago

find the sum to n terms of the sequence 8,88,888,8888...........​

Answers

Answered by VarshaSharma608
12

 \small \star \underline \bold \red{given}

 \huge \underline \bold \green{the \: given \: sequence \: is \: 8 \: 88 \: 888 \: 8888}

 \huge \underline \bold \green{this \: sequence \: is \: not \: a \: g.p. \: however \: i \: can \: be \: changed \: to \: gp \: by \: writing \: the \: terms \: as}

s \: 8 + 88 + 888 + 8888

  \frac{8}{9} |9 + 99 + 999 + 9999 \:  + ............to \: n \: terms|

 \frac{8}{9 |(10 - 1)( {10}^{2} - 1( {10}^{3}  - 1) ( {10}^{4}   - 1) +  to \: n \: terms | }

 \frac{8}{9}  |(10 +  {10}^{2}  + ......n \: terms|  - (1 + 1 + 1 + n \: terms)

 \frac{8}{9}  | \frac{10( {10}^{n}) }{10 - 1} - n |

 \frac{8}{9}  | \frac{10( {10}^{n }  - 1)}{9} - n |

 \frac{80}{81} ( {10}^{n} ) -  \frac{8n}{9}

Similar questions