Math, asked by himanshu10043, 19 hours ago

Find the sum to n terms of the sequence, 8, 88, 888, 8888....​

Answers

Answered by mathdude500
2

Answer:

\boxed{\sf \: 8 + 88 + 888 + 8888 + .. \: n \: terms  =  \: \dfrac{8}{9}\left[\dfrac{10( {10}^{n}  - 1)}{9}  - n \right]  \: }\\  \\

Step-by-step explanation:

Given series is

\sf \: 8 + 88 + 888 + 8888 + ... \: n \: terms \\  \\

\sf \:  =  \: 8(1 + 11 + 111 + 1111 + ... \: n \: terms) \\  \\

\sf \:  =  \: \dfrac{8}{9} (9 + 99 + 999 + 9999 + ... \: n \: terms) \\  \\

\sf \:  =  \: \dfrac{8}{9} [(10 - 1) + (100 - 1) + (1000 - 1)  + ... \: n \: terms]\\  \\

\sf \:  =  \: \dfrac{8}{9}[ 10 + 100 + 1000 + .. \: n \: terms) - (1 + 1 + 1 + .. \: n \: terms)] \\  \\

We know,

Sum of n terms of a GP series having first term a and common ratio r is given by

\begin{gathered}\begin{gathered}\bf\: S_n = \begin{cases} &\sf{\dfrac{a( {r}^{n} - 1) }{r - 1} }, \:  \: r \:  \ne \: 1 \\ \\  &\sf{\qquad \: na, \:   \:  \: \: r = 1} \end{cases}\end{gathered}\end{gathered} \\  \\

So, using these results, we get

\sf \:  =  \: \dfrac{8}{9}\left[\dfrac{10( {10}^{n}  - 1)}{10 - 1}  - n \times 1 \right] \\  \\

\sf \:  =  \: \dfrac{8}{9}\left[\dfrac{10( {10}^{n}  - 1)}{9}  - n \right] \\  \\

Hence,

\implies\sf \: 8 + 88 + 888 + 8888 + .. \: n \: terms  =  \: \dfrac{8}{9}\left[\dfrac{10( {10}^{n}  - 1)}{9}  - n \right] \\  \\

Answered by KnowledgeMaster2
0

Answer:

The given sequence is an example of a geometric sequence with the first term (a) being 8 and the common ratio (r) being 10. To find the sum of the first n terms, we can use the formula:

Sn = a(1 - r^n) / (1 - r)

Substituting the values for a and r, we get:

Sn = 8(1 - 10^n) / (1 - 10)

Simplifying this expression, we get:

Sn = (8/9) * (1 - 10^n)

Therefore, the sum of the first n terms of the given sequence is given by:

Sn = (8/9) * (1 - 10^n)

For example, to find the sum of the first 4 terms, we substitute n=4 and get:

S4 = (8/9) * (1 - 10^4) = (8/9) * (-9992) = -8888

Similar questions