Math, asked by marchi577, 3 months ago

find the sum to n terms of the series 1^2 + (1^2 + 2^2) + (1^2 + 2^2 +3^2) +...​

Answers

Answered by BrainlyTwinklingstar
2

Given series :

 \sf 1^2 + (1^2 + 2^2) + (1^2 + 2^2 +3^2) +...n \: terms

 \sf n \: term \:T_n =  1^2 + 2^2 +3^2+...  + {n}^{2}

 \sf T_n =   \dfrac{n(n + 1)(2n + 1)}{6}

 \sf T_n =   \dfrac{1}{6} n(2 {n}^{2}  + 3n + 1)

 \sf T_n =   \dfrac{1}{6} (2 {n}^{3}  + 3{n}^{2}  + n)

 \sf T_n =   \dfrac{ {n}^{3} }{3}  +  \dfrac{ {n}^{2} }{2}  +  \dfrac{n}{6}

 \sf Sum  \: of  \: n  \: terms = S_n = \sum \limits_1^n T_n

 \sf S_n = \dfrac{1}{3}  \dfrac{ {n}^{2} {(n + 1)}^{2}  }{4}  +  \dfrac{1}{2}  \dfrac{n(n + 1)}{6}  +  \dfrac{1}{6}  \dfrac{n(n + 1)}{6}

 \sf S_n = \dfrac{n(n + 1)  }{12}  [n(n + 1) + (2n + 1) + 1]

 \sf S_n = \dfrac{n(n + 1)  }{12}  [ {n}^{2}  + 3n + 2]

 \sf S_n = \dfrac{n(n + 1)  }{12}  (n + 1)(n + 2)

 \sf S_n = \dfrac{n(n + 1) ^{2} (n + 2)  }{12}

Similar questions