Math, asked by vaibhavi560, 4 months ago

Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 +.............​

Answers

Answered by BrainlyTwinklingstar
7

Answer

Given series,

1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 +.......

nth term t\sf _n = n(n + 1)(n+2)

t\sf _n = n(n² + 3n + 2)

t\sf _n = n³ + n² + 2n

we know,

Sum to n terms =  \sf S_n =  \sum\limits_1^nt_n

 \sf S_n =  \sum\limits_1^n( {n}^{3}  + 3 {n}^{2}  + 2n)

 \sf S_n =  \sum\limits_1^n {n}^{3}  + 3\sum\limits_1^n {n}^{2} + 2\sum\limits_1^n n

\sf \sum {n}^{3} = \dfrac{ {n}^{2} {(n + 1)}^{2}  }{4}

\sf \sum {n}^{2} = \dfrac{n(n + 1)(2n + 1)}{6}

\sf \sum n =  \dfrac{(n + 1)}{2}

 \sf S_n =  \dfrac{ {n}^{2} {(n + 1)}^{2}  }{4}  + 3 \dfrac{n(n + 1)(2n + 1)}{6}  + 2 \dfrac{(n + 1)}{2}

 \sf S_n =  \dfrac{ n {(n + 1)}  }{2} \bigg[ \dfrac{n(n + 1)}{2}  + 2n + 1 + 2 \bigg]

 \sf S_n =  \dfrac{ n {(n + 1)}  }{2} \bigg[ \dfrac{ {n}^{2} + n + 4n + 6 }{2}  \bigg]

 \sf S_n =  \dfrac{ n {(n + 1)}  }{2} \bigg[ \dfrac{ {n}^{2} +5n + 6 }{2}  \bigg]

 \sf S_n =  \dfrac{ n {(n + 1)}  }{2} \bigg[ \dfrac{ (n + 2)(n + 3) }{2}  \bigg]

 \sf S_n =  \dfrac{ n {(n + 1)(n + 2)(n + 3)}  }{4}

Similar questions