Math, asked by JOYSJ, 6 months ago

Find the sum to n terms of the series 6+66+666+...​

Answers

Answered by pcjaiswal71
5

Answer:

Sn= n/2(2a+(n-1)d)

=6(1+11+111+…………..n)

=6*(9/9)(1+11+111+…………..n)

=(6/9)(9+99+999………….n)

now,

=(6/9)((10–1)+(100–1)+(1000–1)………..n)

=(6/9)[(10+100+1000…….n)-(1+1+1……..n)]

=(6/9)[(10+10^2+10^3………n) - (1+1+1……..n)]

r = 10

a=10

now put in the formula

Sn= a1(r^n-1)/r-1

where r=! 1

Sn = (6/9)[(10(10^n-1)/(10–1))- n]

Hope this will help you ☺️!!

Mark this answer as brainliest ✌️ please..

Answered by mathdude500
3

Answer:

\boxed{\sf \: 6 + 66 + 666 + 6666 + .. \: n \: terms  =  \: \dfrac{2}{3}\left[\dfrac{10( {10}^{n}  - 1)}{9}  - n \right] \: } \\

Step-by-step explanation:

Given series is

\sf \: 6 + 66 + 666 + 6666 + ... \: n \: terms \\  \\

\sf \:  =  \: 6(1 + 11 + 111 + 1111 + ... \: n \: terms) \\  \\

\sf \:  =  \: \dfrac{6}{9} (9 + 99 + 999 + 9999 + ... \: n \: terms) \\  \\

\sf \:  =  \: \dfrac{2}{3} [(10 - 1) + (100 - 1) + (1000 - 1)  + ... \: n \: terms]\\  \\

\sf \:  =  \: \dfrac{2}{3}[ 10 + 100 + 1000 + .. \: n \: terms) - (1 + 1 + 1 + .. \: n \: terms)] \\  \\

We know,

Sum of n terms of a GP series having first term a and common ratio r is given by

\begin{gathered}\begin{gathered}\bf\: S_n = \begin{cases} &\sf{\dfrac{a( {r}^{n} - 1) }{r - 1} }, \:  \: r \:  \ne \: 1 \\ \\  &\sf{\qquad \: na, \:   \:  \: \: r = 1} \end{cases}\end{gathered}\end{gathered} \\  \\

So, using these results, we get

\sf \:  =  \: \dfrac{2}{3}\left[\dfrac{10( {10}^{n}  - 1)}{10 - 1}  - n \times 1 \right] \\  \\

\sf \:  =  \: \dfrac{2}{3}\left[\dfrac{10( {10}^{n}  - 1)}{9}  - n \right] \\  \\

Hence,

\implies\sf \: 6 + 66 + 666 + 6666 + .. \: n \: terms  =  \: \dfrac{2}{3}\left[\dfrac{10( {10}^{n}  - 1)}{9}  - n \right] \\  \\

Similar questions