Math, asked by jeremyrex, 1 year ago

Find the sum to n terms of the series:
(x ^{2}  +  \frac{1}{x ^{2} }  + 2) +  ({x}^{4}  +  \frac{1}{ {x}^{4} }  + 5) + ( {x}^{6}  +  \frac{1}{ {x}^{6} }  + 8) + ...

Answers

Answered by A1111
4

 =  > ( {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2) + ( {x}^{4}  +  \frac{1}{ {x}^{4} }  + 5) + ( {x}^{6}  +  \frac{1}{ {x}^{6} }  + 8) + ........... \\  =  > ( {x}^{2}  +  {x}^{4}  +  {x}^{6}  + ...........) + ( \frac{1}{ {x}^{2} }  +  \frac{1}{ {x}^{4} }  +  \frac{1}{ {x}^{6} }  + ...........) + (2 + 5 + 8 + ...........) \\  =  >  \frac{ {x}^{2} ( {x}^{2n}  - 1)}{ {x}^{2} - 1 }  +  \frac{ \frac{1}{ {x}^{2} }(1 -  \frac{1}{ {x}^{2n} } )  }{1 -  \frac{1}{ {x}^{2} } }  +  \frac{n}{2} (2 \times 2 + (n - 1)3) \\

Now, simplify it and get your answer...

Similar questions