Math, asked by Anonymous, 1 day ago

Find the sum upto 10 terms of the series,
 \frac{3 \times  {1}^{3} }{ {1}^{2} }  +  \frac{5 \times ( {1}^{3}  +  {2}^{3}) }{ {1}^{2} +  {2}^{2}  }  +  \frac{7 \times( {1}^{ 3}  +  {2}^{3}   +  {3}^{3} )}{ {1}^{2}  +  {2}^{2} +  {3}^{2} }   + ...

Answers

Answered by Anonymous
9

Given series,

{ \displaystyle \longrightarrow \frac{3 \times {1}^{3} }{ {1}^{2} } + \frac{5 \times ( {1}^{3} + {2}^{3}) }{ {1}^{2} + {2}^{2} } + \frac{7 \times( {1}^{ 3} + {2}^{3} + {3}^{3} )}{ {1}^{2} + {2}^{2} + {3}^{2} } + ...}

Let's firstly find the general term of the given series.

The given series has a sequence of odd numbers in numerator, sum of cubes of natural numbers upto n, and sum of squares of n natural number is denominator. Therefore, the general term of the given series is given by,

 {\implies T_n = \dfrac{(2n+1)(1^3+2^3+3^3+...+n^3)}{(1^2+2^2+3^2+...+n^2)}}

We know that,

  •  \displaystyle \sum\limits_{i=1}^n i^2=\dfrac{n(n+1)(2n+1)}{6}

  •  \displaystyle \sum\limits_{i=1}^n i^3 = \left(\dfrac{n(n+1)}{2}\right)^2

Therefore,

{\implies T_n = \dfrac{(2n+1)  \times  \left(\dfrac{n(n + 1)}{2} \right)^{2} }{ \dfrac{n(n + 1)(2n + 1)}{6} }}

{\implies T_n = \dfrac{\dfrac{ {n}^{2}  (n + 1)^{2} }{2}  }{ \dfrac{n(n + 1)}{3} }}

\implies T_n = \dfrac{ {n}(n + 1) }{2}  \times 3

 \boxed{\implies T_n =  \dfrac{3 {n}^{2} }{2} +  \frac{n}{2} }

This is the general term of the given series.

Now, the sum of given series upto 10 terms is given by,

 \displaystyle\longrightarrow\sum\limits_{n=1}^{10}T_n

\displaystyle\longrightarrow\sum\limits_{n=1}^{10} \frac{3 {n}^{2} }{2} +  \frac{3n}{2}

\displaystyle\longrightarrow \frac{3}{2}  \left(\sum\limits_{n=1}^{10}  {n}^{2} + n  \right)

\displaystyle\longrightarrow \frac{3}{2}  \left(\sum\limits_{n=1}^{10}  {n}^{2} +\sum\limits_{n=1}^{10}n \right)

{\displaystyle\longrightarrow \frac{3}{2}  \left( \frac{10(10 + 1)(2(10) + 1)}{6}  + \frac{(10)(10+ 1)}{2}  \right)}

{\displaystyle\longrightarrow \frac{3}{2}  \left( \frac{10 \times 11 \times 21}{6}  + \frac{10 \times 11}{2}  \right)}

{\displaystyle\longrightarrow \frac{3}{2}  \left( 385+ 55  \right)}

{\displaystyle\longrightarrow \frac{3}{2}   \times 440}

{\displaystyle\longrightarrow 3   \times 220}

{\displaystyle\longrightarrow 66}0

Hence the required sum of 660.

Similar questions