Math, asked by ikkrishnakumar944, 10 months ago

find the sumnof 3 digit numbers which are multiples of 8

Answers

Answered by Anonymous
0

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{The \ sum \ of \ three \ digit \ numbers \ which}

\sf{are \ multiple \ of \ 8 \ is \ 61376.}

\sf\orange{To \ find:}

\sf{The \ sum \ of \ three \ digit \ numbers \ which}

\sf{are \ multiple \ of \ 8.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Three \ digit \ numbers \ which \ are \ multiple}

\sf{of \ 8 \ are:-}

\sf{104,112,120,...,992}

\sf{Here, \ t1=104, \ t2=112, \ t3=120}

\sf{t2-t1=112-104=8}

\sf{t3-t2=120-112=8}

\sf{\therefore{The \ sequence \ form \ is \ in \ A.P.}}

\sf{with \ common \ difference (d) \ as \ 8.}

\sf{In \ the \ A.P.}

\sf{104,112,120,…,992}

\sf{Here, \ t1=a=104, \ d=8 \ and \ tn=992}

\sf{tn=a+(n-1)d... formula}

\sf{\therefore{992=104+(n-1)8}}

\sf{8(n-1)=992-104}

\sf{8(n-1)=888}

\sf{n-1=\frac{888}{8}}

\sf{n-1=111}

\sf{n=111+1}

\sf{n=112}

__________________________________

\sf{Sn=\frac{n}{2}[t1+tn]…formula}

\sf{\therefore{S112=\frac{112}{2}[104+992]}}

\sf{S112=56\times1096}

\sf{S112=61376}

\sf\purple{\tt{\therefore{The \ sum \ of \ three \ digit \ numbers \ which}}}

\sf\purple{\tt{are \ multiple \ of \ 8 \ is \ 61376.}}

Similar questions