Math, asked by sayanikadutta28, 2 months ago

Find the sums of: -5+(-8)+(-11)+...+(-230).
Chapter AP and GP.​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given series is

\rm :\longmapsto\: - 5 + ( - 8) + ( - 11) +  -  -  -  -  + ( - 230)

Its an AP series, with

  • First term, a = - 5

  • Common difference, d = (-8) - (-5) = - 3

  • nᵗʰ term of series, aₙ = - 230

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

On substituting the values in above formula, we get

\rm :\longmapsto\: - 230 =  - 5 + (n - 1)( - 3)

\rm :\longmapsto\: - 230  + 5  =  - 3n + 3

\rm :\longmapsto\: - 225  =  - 3n + 3

\rm :\longmapsto\: - 225 - 3  =  - 3n

\rm :\longmapsto\: - 228 =  - 3n

\bf\implies \:n = 76

Further,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of first n terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} (\:a\:+ \:a_n )}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

Tʜᴜs,

On substituting the values in above formula, we get

\rm :\longmapsto\:S_n = \dfrac{76}{2} ( - 5 - 230)

\rm :\longmapsto\:S_n = 38 \times ( - 235)

\bf\implies \:S_n = -  \:  8930

Additional Information :-

↝ Sum of first n terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(\:2a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Similar questions