Math, asked by parvsr3790, 9 months ago

Find the sums of 7+10+13+........184

Answers

Answered by Anonymous
4

Given ,

  • First term (a) = 7
  • Common difference (d) = 3
  • Last term (l) = 184

We know that , the first n terms of an AP is given by

 \star \:  \sf \:  a_{n} = a + (n - 1)d

Thus ,

\sf \Rightarrow </p><p></p><p>184 = 7 + (n - 1)3 \\  \\ \sf \Rightarrow  \frac{177}{3}  = (n - 1) \\  \\ \sf \Rightarrow </p><p> n - 1 = 59 \\  \\ \sf \Rightarrow </p><p>n = 60

And the sum of first n terms of an AP is given by

 \star \:  \:  \sf S_{n} =  \frac{n}{2}  \times (a + l)

Thus ,

\sf \Rightarrow </p><p></p><p>S =  \frac{60}{2}  \times  (7 + 184) \\  \\ \sf \Rightarrow </p><p></p><p>S = 30 × (191) \\  \\ \sf \Rightarrow </p><p> </p><p>S = 5730</p><p>

 \therefore \underline{ \bold{ The \:  sum  \: of  \: first \: 60  \: terms \: of  \: AP \: is  \: 5730}}


BrainlyPopularman: Latex error.
Anonymous: where?
BrainlyPopularman: in complete answer
BrainlyPopularman: check on web.
Anonymous: ok let me check
Answered by BrainlyPopularman
5

Question :

Find the sum of 7 + 10 + 13 + ..... + 184

ANSWER :

 \\  \longrightarrow  {  \red { \boxed{ \bold{ S_{60}  = 5,730 }}}}  \\

GIVEN :

An A.P. 7 + 10 + 13 + ........ + 184

TO FIND :

Sum of given series = ?

SOLUTION :

• We know that Sum of A.P. is –

 \\  \implies  { \pink{ \boxed{  \boxed{ \bold{ S_{n}  =  \dfrac{n}{2}[2a + (n - 1)d] }}}}}  \\

• nth term of A.P. –

 \\  \implies  { \pink{ \boxed{  \boxed{ \bold{ T_{n}  =  [a + (n - 1)d] }}}}}  \\

• Here –

 \\    { \blue{ \bold{ \:  \:  \: \:  \:  \:   \:  \:  \:  \:  \: . \:  \: a = first \:  \: term }}} \\

 \\    { \blue{ \bold{ \:  \:  \: \:  \:  \:   \:  \:  \:  \:  \: . \:  \: d = common \:  \: difference }}} \\

 \\    { \blue{ \bold{ \:  \:  \: \:  \:  \:   \:  \:  \:  \:  \: . \:  \: n = total \:  \: term }}} \\

 \\    { \blue{ \bold{ \:  \:  \: \:  \:  \:   \:  \:  \:  \:  \: . \:  \:  S_{n}  = sum \:  \: of \:  \: n \:   \:  \: terms }}} \\

 \\    { \blue{ \bold{ \:  \:  \: \:  \:  \:   \:  \:  \:  \:  \: . \:  \:  T_{n}  = nth \:  \: term }}} \\

• In the given series –

 \\  { \bold{ \:  \:  \: \:  \:  \:   \:  \:  \:  \:  \: . \:  \: a = 7 }} \\

 \\  { \bold{ \:  \:  \: \:  \:  \:   \:  \:  \:  \:  \: . \:  \: d = 3 }} \\

 \\  { \bold{ \:  \:  \: \:  \:  \:   \:  \:  \:  \:  \: . \:  \: T_{n}  = 184 }} \\

• Now put the values –

 \\  \implies  { \bold{ 184  =  [7 + (n - 1)3] }}  \\

 \\  \implies  { \bold{ 184  =  7 +3n - 3 }}  \\

 \\  \implies  { \bold{ 184  =  4 +3n}}  \\

 \\  \implies  { \bold{3n = 180}}  \\

 \\  \implies  { \boxed{ \bold{n = 60}}}  \\

• Now sum –

 \\  \implies  { \bold{ S_{60}  =  \dfrac{60}{2}[2(7) + (60 - 1)(3)] }}  \\

 \\  \implies  { \bold{ S_{60}  = 30[14 + 177] }}  \\

 \\  \implies  { \bold{ S_{60}  = 30[191] }}  \\

 \\  \implies  { \boxed{ \bold{ S_{60}  =5,730 }}}  \\


sethrollins13: Awe.❤️
BrainlyPopularman: Tq.
Similar questions