Math, asked by sanjanashekhar26, 10 months ago

Find the sums of all two digit
odd positive numbers​

Answers

Answered by sourya1794
52

\bf{\underline{Solution}}:-

All two digit odd positive numbers are 11,13,15,17,.........,99.

This is an Arithmetic progression (AP).

Given :-

  • First term (a) = 11

  • Common difference (d) = 13 - 11 = 2

  • Last term (L) = 99

To find :-

  • Required sum

Solution :-

Let the number of terms be n

we know that,

\blue{\bigstar}\:\:{\underline{\boxed{\bf\red{T_n=a+(n-1)d}}}}

\rm\longrightarrow\:99=11+(n-1)\times{2}

\rm\longrightarrow\:99-11=(n-1)\times{2}

\rm\longrightarrow\:88=(n-1)\times{2}

\rm\longrightarrow\:\cancel\dfrac{88}{2}=(n-1)

\rm\longrightarrow\:44=(n-1)

\rm\longrightarrow\:44+1=n

\rm\longrightarrow\:45=n

\rm\longrightarrow\:n=45

Then,

we know that,

\orange{\bigstar}\:\:{\underline{\boxed{\bf\pink{s=\dfrac{n}{2}(a+L)}}}}

\rm\longrightarrow\:s=\dfrac{45}{2}(11+99)

\rm\longrightarrow\:s=\dfrac{45}{\cancel{2}}\times\:\cancel{110}\:\:\:\:\:55

\rm\longrightarrow\:s=45\times{55}

\rm\longrightarrow\:s=2475

Hence,the required sum will be 2475.

Similar questions