Find the sun of all natural number between 100 and 500 which are divisible by 7
Answers
Answered by
3
105+112+119+...…...+497
105+(n-1)7=497
105+7n-7=497
7n=399
n=57
sum=n(a+l)/2
sum=57(105+497)/2
sum=
15351
105+(n-1)7=497
105+7n-7=497
7n=399
n=57
sum=n(a+l)/2
sum=57(105+497)/2
sum=
15351
Answered by
4
First number = 105 = a
Last number = 497 = l
difference = 7
××××××××××××××××
l = a + (n - 1)d
497 = 105 + (n - 1)7
497 - 105 = (n - 1)7
392 = (n-1)7
56 = n - 1
57 = n
Sum = (105+497) × 57/2
=> (602)×57/2
=> 301 × 57
=> 17157
I hope this will help you
(-:
Last number = 497 = l
difference = 7
××××××××××××××××
l = a + (n - 1)d
497 = 105 + (n - 1)7
497 - 105 = (n - 1)7
392 = (n-1)7
56 = n - 1
57 = n
Sum = (105+497) × 57/2
=> (602)×57/2
=> 301 × 57
=> 17157
I hope this will help you
(-:
Similar questions
English,
7 months ago
Math,
7 months ago
English,
7 months ago
Accountancy,
1 year ago
English,
1 year ago