Math, asked by mahiparekh030, 4 months ago

find the surface area and the diagonal of a cuboid 30cm long 24cm wide and 18 cm high

The ans should be 3384cm²
don't fake answers​

Answers

Answered by mathdude500
4

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}} \\

Given :-

Dimensions of Cuboid

  • Length, l = 30 cm
  • Breadth, b = 24 cm
  • Height, h = 18 cm

To find:-

☆Surface area of Cuboid

☆Diagonal of a Cuboid

Formula used :-

Surface  \: area  \: of  \: Cuboid = 2 \times (lb \:  + bh + hl) \\ </u></p><p><u>[tex]Surface  \: area  \: of  \: Cuboid = 2 \times (lb \:  + bh + hl) \\ Diagonal  \: of \:  a  \: Cuboid  =  \sqrt{ {l}^{2}  +  {b}^{2}  +  {h}^{2} }

Solution :-

Surface  \: area  \: of  \: Cuboid = 2 \times (lb \:  + bh + hl)  \\  = 2 \times (30 \times 24 + 24 \times 18 + 18 \times 30) \\  = 2 \times (720 + 432 + 540) \\  = 2 \times 1692 \\  = 3384 \:  {cm}^{2} \\ </u></p><p><u>[tex]Surface  \: area  \: of  \: Cuboid = 2 \times (lb \:  + bh + hl)  \\  = 2 \times (30 \times 24 + 24 \times 18 + 18 \times 30) \\  = 2 \times (720 + 432 + 540) \\  = 2 \times 1692 \\  = 3384 \:  {cm}^{2} \\ Diagonal  \: of \:  a  \: Cuboid  =  \sqrt{ {l}^{2}  +  {b}^{2}  +  {h}^{2} }  \\  =  \sqrt{ {30}^{2} +  {24}^{2}   +  {18}^{2} }  \\  =  \sqrt{900 + 576 + 324}  \\  =  \sqrt{1800}   \\  =  \sqrt{3 \times 3 \times 2 \times 10 \times 10}  \\  = 30 \sqrt{2}  \: cm

\huge \fcolorbox{black}{cyan}{♛hope \: it \: helps \: you♛}

Similar questions