Math, asked by BestQuestion, 4 months ago

Find the surface area of a football cover made of 12 regular pentagon and 20 regular hexagons.
( Area of a pentagon of 6 cm Side 61.92 cm ^2)​

Answers

Answered by Anonymous
81

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge\boxed{\mathfrak{\red{\fcolorbox{blue}{white}{Answer }}}}

 \bf \scriptsize{Area \:  of  \: 1  \: pentagon = 61.92 cm^{2} }

 \bf \scriptsize{Area \:  of  \: 12 \:  Pentagons \:  = 12×  \: 61 . 92}

 \bf \scriptsize{Area  \: of \:  one \: side\:  hexagons = \:  6 \: cm}

 \bf \scriptsize{Hexagon  \: Contains \:  6  \: equilateral triangles ,}

 \bf \scriptsize{Area  \: of  \: a \:  Equilateral  \: triangle =  \frac{ \sqrt{3} }{4}(a)^{2}} \\  \\   \bf \scriptsize{\implies  \frac{ \sqrt{3} }{4} (6)^{2} }   \\ \\ \bf \scriptsize{ \frac{1.73 \times 36}{4} = 15.57 \: cm ^{2}  }

 \bf \scriptsize{Area  \: of  \: hexagon = 6  \: times  \: area \:  of  \: equilateral  \: triangles} \\  \bf \scriptsize = 6 \times 15.57 = 93.42 \: cm^{2}

 \bf \scriptsize{Area  \: of \: 20  \: hexagon = 20 \times 93.42} \\  \bf \scriptsize= 1868.40 \: cm^{2}

 \bf \scriptsize{Area \: of \: football \: cover =  Area \: of \: 12 \: pentaons \: + Area  \: of \: 20  \: hexagon } \\  \bf \scriptsize=743.04 \times 1868.40 \: cm^{2}  \\  \bf \scriptsize = 2611.44 \: cm^{2}

 \bf \scriptsize \red{Hence , Area \:  of \:  Football  \: =  \: 2611.44  \: cm^{2}  }

Attachments:
Similar questions