Math, asked by Likhitharas659, 3 months ago

Find the surface area of a sphere of radius 7cm​

Answers

Answered by MrImpeccable
22

ANSWER:

Given:

  • Radius of sphere = 7cm.

To Find:

  • Surface area of the sphere

Solution:

\text{\sf{We know that,}}\\\\:\longrightarrow \sf{Surface\:Area\:of\:a\:sphere=4\times\pi\times r^2} \\\\\text{\sf{Here, r is the radius of the sphere}} \\\\\text{\sf{But we are given that radius is 7cm.}} \\\\\text{\sf{Take value of $\pi$ as 22/7.}} \\\\\text{\sf{So,}} \\\\:\implies\sf{Surface\:Area\:of\:the\:sphere=4\times\dfrac{22}{7\!\!\!/}\times7^{2\!\!\!/}} \\\\:\implies\sf{Surface\:Area\:of\:the\:sphere=4\times22\times7} \\\\:\implies\bf{Surface\:Area\:of\:the\:sphere=616cm^2}

Formula Used:

  • Surface area of a sphere = 4πr²

Learn More:

  • Volume of cylinder = πr²h
  • T.S.A of cylinder = 2πrh + 2πr²
  • Volume of cone = ⅓ πr²h
  • C.S.A of cone = πrl
  • T.S.A of cone = πrl + πr²
  • Volume of cuboid = l × b × h
  • C.S.A of cuboid = 2(l + b)h
  • T.S.A of cuboid = 2(lb + bh + lh)
  • C.S.A of cube = 4a²
  • T.S.A of cube = 6a²
  • Volume of cube = a³
  • Volume of sphere = (4/3)πr³
  • Surface area of sphere = 4πr²
  • Volume of hemisphere = ⅔ πr³
  • C.S.A of hemisphere = 2πr²
  • T.S.A of hemisphere = 3πr²
Answered by Anonymous
134

Answer:

 \large \underline\red {\sf \pmb{Given}}

  • ➛ Radius of Sphere = 7 cm

\large \underline\red{\sf \pmb{To \: Find }}

  • ➛Surface area of Sphere

 \large \underline\red {\sf \pmb{Using \:  Formula}}

 \circ\underline{\boxed {\sf{Area  \: of  \: Sphere  =4  {\pi} {r}^{2}  }}}

 \large \underline {\sf \pmb{Solution}}

:  \implies{\sf{Surface \: Area  \: of  \: Sphere  =4  {\pi} {r}^{2}  }}

  • Substituting the values

:  \implies{\sf{Surface \: Area  \: of  \: Sphere  =4   \times { \dfrac{22}{7} } \times  {7}^{2}  }}

{:  \implies{\sf{Surface \: Area  \: of  \: Sphere  =4   \times { \dfrac{22}{7} } \times7 \times 7  }}}

{:  \implies{\sf{Surface \: Area  \: of  \: Sphere  =4   \times { \dfrac{22}{ \cancel{7} }}\times \cancel{7 }\times 7  }}}

{:  \implies{\sf{Surface \: Area  \: of  \: Sphere  =4    \times22 \times{7}}}}

{:  \implies{\sf{Surface \: Area  \: of  \: Sphere  =616 \: {cm}^{2} }}}

 \underline{ \boxed{ \boxed{\sf \purple{Surface \: Area  \: of  \: Sphere  =616 \: {cm}^{2} }}}}

  • Henceforth,The Area of Sphere is 616 cm²

 \large  \underline\red{\sf \pmb{Diagram}}

\setlength{\unitlength}{1.2cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\qbezier(-2.3,0)(0,-1)(2.3,0)\qbezier(-2.3,0)(0,1)(2.3,0)\thinlines\qbezier (0,0)(0,0)(0.2,0.3)\qbezier (0.3,0.4)(0.3,0.4)(0.5,0.7)\qbezier (0.6,0.8)(0.6,0.8)(0.8,1.1)\qbezier (0.9,1.2)(0.9,1.2)(1.1,1.5)\qbezier (1.2,1.6)(1.2,1.6)(1.38,1.9)\put(0.2,1){\bf 7cm}\end{picture}

Request: Please see the answer from website Brainly.in.

  \large \underline\red{\sf \pmb{Know \: More }}

Sphere

  • ➤ A sphere is shaped like a ball. It can be hollow or solid.
  • ➤ A sphere is a round, ball-shaped solid. It has one continuous surface with no edges or vertices.

Formula Related To Sphere

Diameter of a Sphere Formula

  •   : \implies \sf \purple{D = 2 r}

Surface Area of a Sphere Formula

  •  :  \implies \sf \purple{A = 4  \pi  {r}^{2} }

Volume of a Sphere

  •   : \implies \sf \purple{V = \bigg( \dfrac{4}{3}  \bigg) π  {r}^{3} }
Similar questions