Math, asked by uzma123426, 5 months ago

find the surface area of the following cylinders radius 3.5 cm and hight 14.9 cm I want all steps and division too​

Answers

Answered by CɛƖɛxtríα
59

{\underline{\underline{\bf{Given:}}}}

  • Base radius of a cylinder = 3.5 cm
  • Height of the cylinder = 14.9 cm

{\underline{\underline{\bf{Need\:to\:find:}}}}

  • The TSA of the cylinder.

{\underline{\underline{\bf{Formula\:to\:be\:used:}}}}

\underline{\boxed{\sf{{TSA}_{[Cylinder]}=2\pi r(h+r)\:sq.units}}}

{\underline{\underline{\bf{Solution:}}}}

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎We are given with the measures of base radius and height of a cylinder. The TSA of the cylinder has to be found. We can find it by inserting the given measures in the formula of TSA of cylinder:

\mapsto{\sf{2\pi r(h+r)\:sq.units}}

The value of \sf{\pi} can be taken as \sf{\frac{22}{7}}. Let us do it!

\:\:\:\:\:\:\:\:\implies{\sf{2\times \dfrac{22}{7}\times 3.5\times (14.9+3.5)}}

\:\:\:\:\:\:\:\:\implies{\sf{2\times \dfrac{22}{7}\times 3.5\times 18.4}}

\:\:\:\:\:\:\:\:\implies{\sf{2\times \dfrac{22}{\cancel{7}}\times \dfrac{\cancel{35}}{10}\times \dfrac{184}{10}}}

\:\:\:\:\:\:\:\:\implies{\sf{2\times 22\times \dfrac{\cancel{5}}{\cancel{10}}\times \dfrac{184}{10}}}

\:\:\:\:\:\:\:\:\implies{\sf{\cancel{2}\times 22\times \dfrac{1}{\cancel{2}}\times \dfrac{184}{10}}}

\:\:\:\:\:\:\:\:\implies{\sf{\cancel{22}\times \dfrac{184}{\cancel{10}}}}

\:\:\:\:\:\:\:\:\implies{\sf{\dfrac{11\times 184}{5}}}

\:\:\:\:\:\:\:\:\implies{\sf{\dfrac{\cancel{2024}}{\cancel{5}}}}

\:\:\:\:\:\:\:\:\implies{\frak{\red{\underline{\underline{404.8\:{cm}^{2}}}}}}

{\underline{\underline{\bf{Required\:answer:}}}}

  • The surface area of the cylinder is 404.8 cm².

_____________________________________________

{\underline{\underline{\bf{Some\:related\: formulae:}}}}

\:\:\:\:\:\:\:\:\sf{\bullet\:{TSA}_{[Cylinder]}=2\pi r(h+r)\:sq.units}

\:\:\:\:\:\:\:\:\sf{\bullet\:{CSA}_{[Cylinder]}=2\pi rh\:sq.units}

\:\:\:\:\:\:\:\:\sf{\bullet\:{Volume}_{[Cone]}=\dfrac{1}{3}\pi r^2h\:cu.units}

\:\:\:\:\:\:\:\:\sf{\bullet\:{TSA}_{[Cone]}=\pi r(l+r)\:sq.units}

\:\:\:\:\:\:\:\:\sf{\bullet\:{CSA}_{[Cone]}=\pi rl\:sq.units}

\:\:\:\:\:\:\:\:\sf{\bullet\:{Volume}_{[Sphere]}=\dfrac{4}{3}\pi{r}^{3}\:cu.units}

\:\:\:\:\:\:\:\:\sf{\bullet\:{TSA}_{[Sphere]}=4\pi r^2\:sq.units}

Answered by Anonymous
5

Correct Question-:

  • Find the surface area of the cylinder whose Radius is 3.5 cm and height 14.9 cm.

AnswEr-:

  • \underline{\boxed{\star{\sf{\blue{ Total\:Surface\:Area\:of\:of\:Cylinder\:  \: = \: 404.8cm^{2} }}}}}

Explanation-:

 \frak{Given\:\: -:} \begin{cases} \sf{The\:Radius \:of\:Cylinder \:\:is\:= \frak{3.5cm}} & \\\\ \sf{The\:Height \:of\:Cylinder \:is \:=\:\frak{14.9cm}}  \end{cases} \\\\

 \frak{To\:Find\:\: -:} \begin{cases} \sf{The\:Total\: Surface \: Area \:of\:Cylinder \:\:}   \end{cases} \\\\

Solution-:

\underline{\dag{\star{\sf{\red{ Total\:Surface\:Area\:of\:Cylinder  \:  }}}}}

  • \underline{\boxed{\star{\sf{\blue{ Total\:Surface\:Area\:_{(Cylinder)}  \: = \:  2 × \pi × Radius ( Height+ Radius) }}}}}

 \frak{Here\:\: -:} \begin{cases} \sf{The\:Radius \:of\:Cylinder \:\:is\:= \frak{3.5cm}} & \\\\ \sf{The\:Height \:of\:Cylinder \:is \:=\:\frak{14.9cm}} & \\\\ \sf{\pi = \frac{22}{7}} \end{cases} \\\\

Now ,

  • \implies{\sf{\large{Total\: Surface\:Area _ {Cylinder} = 2 × \frac {22}{7} × 3.5 ×( 3.5+14.9)}}}
  • \implies{\sf{\large{Total\: Surface\:Area _ {Cylinder} = 2 × \frac {22}{7} × 3.5 ×18.4}}}
  • \implies{\sf{\large{Total\: Surface\:Area _ {Cylinder} = 2 × \frac {22}{7} × \frac{35}{10} ×18.4}}}
  • \implies{\sf{\large{Total\: Surface\:Area _ {Cylinder} = 2 × 22 × \frac{5}{10} ×18.4}}}
  • \implies{\sf{\large{Total\: Surface\:Area _ {Cylinder} = 2 × 22 × \frac{1}{2} ×18.4}}}
  • \implies{\sf{\large{Total\: Surface\:Area _ {Cylinder} = 2 × 22 ×  9.2}}}
  • \implies{\sf{\large{Total\: Surface\:Area _ {Cylinder} = 44 ×9.2}}}
  • \implies{\sf{\large{Total\: Surface\:Area _ {Cylinder} = 404.8cm^{2}}}}

Therefore,

  • \underline{\boxed{\star{\sf{\blue{ Total\:Surface\:Area\:_{(Cylinder)}  \: = \: 404.8cm^{2} }}}}}

Hence ,

  • \underline{\boxed{\star{\sf{\blue{ Total\:Surface\:Area\:of\:of\:Cylinder\:  \: = \: 404.8cm^{2} }}}}}

_____________________________

More To Know

  • \underline{\boxed{\star{\sf{\blue{ Curved\:Surface\:Area\:_{(Cylinder)}  \: = \:  2 × \pi × Radius × Height }}}}}
  • \underline{\boxed{\star{\sf{\blue{ Total\:Surface\:Area\:_{(Cylinder)}  \: = \:  2 × \pi × Radius ( Height+ Radius) }}}}}

______________________♡____________________________

Similar questions