Math, asked by varunesh5416, 2 days ago

Find the surface of a cube whose volume is 512m^3 .​

Answers

Answered by kumarirakhi1986
0

Answer:

VOLUME OF CUBE =L^3

3L=3512

L=8 m

TOTAL SURFACE AREA OF CUBE = 6L^2

6×8^2

6×64

384m^2= ans

Step-by-step explanation:

PLEASE MARK ME AE BRAINLIEST

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Let assume that edge of the cube be a m.

As it is given that

\rm \: Volume_{(Cube)} = 512 \:  {m}^{3}  \\

We know, Volume of cube of edge a is given by

\boxed{ \rm{ \:Volume_{(Cube)} =  {a}^{3} \: }} \\

So, using this result, we get

\rm \:  {a}^{3} = 512 \\

\rm \:  {a}^{3} = 8 \times 8 \times 8 \\

\rm \:  {a}^{3} =  {8}^{3}  \\

\color{green}\rm\implies \:a \:  =  \: 8 \: m \\

Now,

\rm \: Surface\:Area_{(Cube)} \:  =  \:  {6a}^{2}  \\

\rm \:  =  \: 6 \times  {(8)}^{2}  \\

\rm \:  =  \: 6 \times  64  \\

\rm \:  =  \: 384 \:  {m}^{2}  \\

Thus,

\color{green}\rm\implies \:\boxed{ \rm{ \:Surface\:Area_{(Cube)} \:  =  \: 384 \:  {m}^{2}  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions