Math, asked by ammu462228, 6 months ago

find the system of equation x-y+3z=5,4x+2y-z=0,-x+3y+z=5 by using matrix inversion method​

Answers

Answered by rashich1219
10

Given:

The system of equation x-y+3z=5, 4x+2y-z=0, -x+3y+z=5.

To Find:

find the system of equation using matrix inversion method.

Solution:

given system of equation is -

x-y+3z=5,\\4x+2y-z=0,\\-x+3y+z=5

therefore,

\[\left[ {\begin{array}{*{20}{c}}  1&{ - 1}&3 \\   4&2&{ - 1} \\   { - 1}&3&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}}  x \\   y \\   z \end{array}} \right] = \left[ {\begin{array}{*{20}{c}}  5 \\   0 \\   5 \end{array}} \right]\]

it forms :- AX = B

⇒ X = (A^-1)B

therefore, |A| = 16

\[Adj(A) = \left[ {\begin{array}{*{20}{c}}  5&{ - 3}&{14} \\   {10}&4&{ - 2} \\   { - 5}&{13}&6 \end{array}} \right]\]

so,

X = \dfrac{1}{|A|}AdjA(B)

X = \dfrac{1}{{16}}\left[ {\begin{array}{*{20}{c}}  5&{ - 3}&{14} \\   {10}&4&{ - 2} \\   { - 5}&{13}&6 \end{array}} \right]\left[ {\begin{array}{*{20}{c}}  5 \\   0 \\   5 \end{array}} \right] \hfill \\\\  \left[ {\begin{array}{*{20}{c}}  x \\   y \\   z \end{array}} \right] = \dfrac{1}{{16}}\left[ {\begin{array}{*{20}{c}}  {25 + 0 + 70} \\   {50 + 0 - 10} \\   { - 25 + 0 + 30} \end{array}} \right] \hfill \\

\left[ {\begin{array}{*{20}{c}}  x \\   y \\   z \end{array}} \right] = \dfrac{1}{{16}}\left[ {\begin{array}{*{20}{c}}  {95} \\   {40} \\   5 \end{array}} \right] \hfill \\

On comparing , we get

x=\dfrac{95}{16}\\y=\dfrac{40}{16}\\and\\z=\dfrac{5}{16}

Answered by anilakurathi1
0

Step-by-step explanation:

Similar questions