Math, asked by soccervino11, 2 months ago

find the (tan+sec-1/tan-sec+1)1/sec​

Answers

Answered by sandy1816
33

( \frac{tan + sec - 1}{tan - sec + 1} ) \frac{1}{sec}  \\  = ( \frac{(tan + sec) - ( {sec}^{2}  -  {tan}^{2} )}{tan - sec + 1} ) \frac{1}{sec}  \\  =  \frac{(tan + sec)(1 - sec + tan)}{tan - sec + 1}  \times  \frac{1}{sec}  \\  = (tan + sec) \frac{1}{sec}  \\  = ( \frac{sin + 1}{cos} ) \frac{1}{sec}  \\  =  \frac{1 + sin}{cos \: sec}  \\  = 1 + sin

Hopes it Helps

Answered by Anonymous
61

Solution :

 (\frac{tan \:  + sec \:  - 1}{tan - sec + 1} )( \frac{1}{sec} )

 \implies( \frac{(tan +sec) - ( {sec}^{2}   - {tan}^{2})  }{tan \:  - sec \:  + 1} ) \frac{1}{sec}

 \implies \: ( \frac{(tan + sec)(1 - sec + tan)}{tan - sec + 1} ) \frac{1}{sec}

 \implies \: (tan + sec) \frac{1}{sec}

 \implies \: ( \frac{sin \:  + 1}{cos} ) \frac{1}{sec}

 \implies \:  \frac{1 + sin}{cos \:  \times sec}

 \implies1 + sin

Similar questions