Math, asked by mdsaif7864mushu, 1 month ago

Find the tangent at (_a,0) ;ay^2=x(x+a^2)

Answers

Answered by artikushwaha540
0

Answer:

sorry I don't know the answer

Answered by senboni123456
1

Answer:

Step-by-step explanation:

\tt{Given\,\,curve,\,\,\purple{ay^2=x(x+a^2)}}

To get the slope of the tangent, differentiating both sides w.r.t., x

\sf{2ay\cdot\dfrac{dy}{dx}=(x+a^2)+x}

\sf{\implies\dfrac{dy}{dx}=\dfrac{2x+a^2}{2ay}}

Slope of the tangent at (-a,0) is,

\sf{\implies\dfrac{dy}{dx}\bigg|_{(-a,0)}=\dfrac{2(-a)+a^2}{2a(0)}=\infty}\

Equation of tangent:

\rm{(y-0)=\dfrac{dy}{dx}\bigg|_{(-a,0)}\,(x+a)}\\

\rm{\implies(y-0)=(\infty)(x+a)}\\

\rm{\implies(y-0)=\dfrac{1}{0}\cdot(x+a)}\\

\rm{\implies0=(x+a)}\\

\rm{\implies\,x=-a}\\

\large{\sf{\blue{Hence,\,equation \,\,of\,\,the\,\,tangent\,\,at\,\,(-a,0)\,\,is\,\,x=-a}}}

Similar questions