Math, asked by ia4207073, 17 days ago

Find the Taylor's polynomial approximation of f(x) = x Sinx upto n = 4 about the point a = 0 in the interval-1≤x≤1. Also estimate the maximum error.​

Answers

Answered by oOItzStylishQueenOo
2

Answer:

Maybe the correct and helpful answer..

Attachments:
Answered by shownmintu
1

Tip:

  • Taylor's theorem: f(x)=P_n(x)+R_n(x)
  • f(x)=f(x_0)+f'x_0(x-x_0)+\frac{f''x_0}{2!} (x-x_0)^2+\ldots+\frac{f^nx_0}{n!}(x-x_0)^n+\frac{f^{n+1}c}{(n+1)!}(x-x_0)^{n+1}

Explanation:

  • We have f(x)=xSin[x]
  • We have to find Taylor's Polynomial approximation upto n=4 about the point a=0 in the interval -1\leq x\leq 1.
  • We will find this by Taylor's theorem.

Steps:

Step 1 of 2:

f(x)=P_n(x)+R_n(x) where n=4, so f(x)=P_4(x)+R_4(x)

P_4(x)=f(x_0)+f'x_0(x-x_0)+\frac{f''x_0}{2!}(x-x_0)^2+\frac{f^3x_0}{3!}(x-x_0)^3+\frac{f^4x_0}{4!}(x-x_0)^4

where, x_0=0 , f(x)=xSin(x), f(x_0)=0

f'(x)=Sin(x)+xCos(x), f'(x_0)=0\\f''(x)=2Cos(x)-xSin(x), f''(x_0)=2\\f^3(x)=-3Sin(x)-xCos(x),f^3(x_0)=0\\f^4(x)=-4Cos(x)+xSin(x),f^4(x_0)=-4

So, P_4(x)=0+0+\frac{2}{2!}x^2+0+\frac{-4}{4!}x^4

      P_4(x)=x^2-\frac{x^4}{6}

Step 2 of 2:

R_n(x)=\frac{f^{n+1}(c)}{n+1}(x-x_0)^{n+1} , where n=4 and c be any number between

so, R_4(x)=\frac{f^5(c)}{5!}x^5

R_4(x)=\frac{5Sin(c)+cCos(c)}{120}x^5 for some c between 0 and x.

If we take x=1, we get the approximation

P_4(x)=1-\frac{1}{6}=0.83

However, since c>0, then R_4(1)\leq \frac{1}{120}

R_4(1)\leq 0.84\times 10^{-2}

|Sin(1)-0.83|<0.84\times 10^{-2}

Final Answer:

The Taylor's polynomial approximation of f(x)=xSin(x) upto n=4 about the point a=0 in the interval -1\leq x\leq 1 is |Sin(1)-0.83|<0.84\times 10^{-2}.

Similar questions