Physics, asked by charithgangari59, 7 months ago

Find the tension in OB and AB in the given figure. Also, calculate the tension in OB when just after the string AB is burnt.

Attachments:

Answers

Answered by nirman95
20

To find:

  • Tension in OB and AB in the given figure

  • Tension in OB after AB is burnt.

Calculation:

Applying Lami's Theorem :

 \therefore \:  \dfrac{T_{OB}}{ \sin( {90}^{ \circ} ) }  =  \dfrac{T_{AB}}{ \sin( {90}^{ \circ}  +  {90}^{ \circ}  -  \theta) }  =  \dfrac{mg}{ \sin( {90}^{ \circ} +  \theta ) }

 =  > \:  \dfrac{T_{OB}}{ \sin( {90}^{ \circ} ) }  =  \dfrac{T_{AB}}{ \sin( {180}^{ \circ}   -  \theta) }  =  \dfrac{mg}{ \cos(   \theta ) }

 =  > \:  \dfrac{T_{OB}}{ \sin( {90}^{ \circ} ) }  =  \dfrac{T_{AB}}{ \sin(   \theta) }  =  \dfrac{mg}{ \cos(   \theta ) }

 =  > \:  \dfrac{T_{OB}}{1 }  =  \dfrac{T_{AB}}{ \sin(   \theta) }  =  \dfrac{mg}{ \cos(   \theta ) }

 =  > \: T_{OB}  =  \dfrac{T_{AB}}{ \sin(   \theta) }  =  \dfrac{mg}{ \cos(   \theta ) }

So,

1) \: T_{OB} =  \dfrac{mg}{ \cos( \theta) }

2) \: T_{AB} =  \dfrac{mg \sin( \theta) }{ \cos( \theta) }  = mg \tan( \theta)

After AB is burnt:

 \therefore \: T_{OB} - mg \cos( \theta)  =  \dfrac{m {v}^{2} }{l}

 =  >  \: T_{OB} - mg \cos( \theta)  =  \dfrac{m {(0)}^{2} }{l}

 =  >  \: T_{OB} - mg \cos( \theta)  =  0

 =  >  \: T_{OB}  =  mg \cos( \theta)

Hope It Helps.

Similar questions