Math, asked by abhijithajare1234, 15 days ago

Find the term independent of x in the expansion of
( \sqrt{ \frac{x}{3} }  -  \frac{ \sqrt{3} }{2x} ) {}^{12}
No spam
only hand type
Solve it

Answers

Answered by senboni123456
15

Step-by-step explanation:

We have,

 \bigg(\sqrt{ \frac{x}{3} } - \frac{ \sqrt{3} }{2x}  \bigg)^{12} \\

The general term on expanding this is,

T_{r + 1} =  \sum_{r = 0}^{12}   ( - 1)^{r}.  ^{12}C_{r} \bigg(  \sqrt{ \frac{x}{3} } \bigg) ^{12 - r}. \bigg( \frac{ \sqrt{3} }{2x}  \bigg) ^{r} \\

 \implies \: T_{r + 1} =    ( - 1)^{r}.  ^{12}C_{r} \bigg(  \frac{x}{3}  \bigg) ^{ \frac{12 - r}{2}}. \bigg( \frac{ \sqrt{3} }{2x}  \bigg) ^{r} \\

 \implies \: T_{r + 1} =    ( - 1)^{r}.  ^{12}C_{r} \bigg(  \frac{x ^{6 - \frac{ r}{2}} }{3^{6 - \frac{ r}{2}} }  \bigg) . \bigg( \frac{ 3^{ \frac{r}{2} }  }{2^{r}. x^{r} }  \bigg)  \\

 \implies \: T_{r + 1} =     ( - 1)^{r}.  ^{12}C_{r} (  x ^{6 - \frac{ r}{2} - r}  ) . \bigg( \frac{ 3^{ \frac{r}{2} - 6 +  \frac{r}{2}  }  }{2^{r} }  \bigg)  \\

 \implies \: T_{r + 1} =    ( - 1)^{r}.  ^{12}C_{r} (  x )^{6 - \frac{ 3r}{2} }  . \bigg( \frac{ 3^{ r- 6  }  }{2^{r} }  \bigg)  \\

Now, for term independent of x, 6 - \frac{ 3r}{2}=0\\

 \implies \: 6  = \frac{3 r}{2} \\

 \implies \: r  = 4 \\

So,

 \implies \: T_{4 + 1} =     ( - 1)^{4}.  ^{12}C_{4} (  x )^{6 - \frac{ 3 \times 4}{2} }  . \bigg( \frac{ 3^{ 4- 6  }  }{2^{4} }  \bigg)  \\

 \implies \: T_{5} =     (  1)  . \frac{12 \times 11 \times 10 \times 9}{4 \times 3 \times 2 \times 1} .(  x )^{0}  . \bigg( \frac{ 3^{ - 2  }  }{2^{4} }  \bigg)  \\

 \implies \: T_{5} =     \frac{12 \times 11 \times 10 \times 9}{4 \times 3 \times 2 \times 1} . \bigg( \frac{1 }{2 \times 2 \times 2 \times 2 \times 3 \times 3 }  \bigg)  \\

 \implies \: T_{5} =     \frac{12 \times 11 \times 10 \times 9}{4 \times 3 \times 2 \times 1} . \bigg( \frac{1 }{16 \times 9 }  \bigg)  \\

 \implies \: T_{5} =     \frac{12 \times 11 \times 10 \times 9}{4 \times 3 \times 2 \times 1 \times 16 \times 9}  \\

 \implies \: T_{5} =     \frac{12 \times 11 \times 10 }{4 \times 3 \times 2 \times 1 \times 16 }  \\

 \implies \: T_{5} =     \frac{11 \times 10 }{ 2 \times 1 \times 16 }  \\

 \implies \: T_{5} =     \frac{11 \times 5 }{ 1 \times 16 }  \\

 \implies \: T_{5} =     \frac{55 }{  16 }  \\

Similar questions