Math, asked by Deepika2266, 1 year ago

Find the term independent of x in the expansion of (x + 1/x)10.​

Answers

Answered by gauravbhoye1
1

Term independent of x index of the means index of the term should be zero.

first we will find the general term.

Tr+1= 10Cr(2x)^10-r(-1/x)^r

solve this and you will get index of x=10-2r

put 10-2r=0

r=5

if r=5then term will be 6th

put r=5 in the general term.

and you will get T6= -4032

Answered by Sharad001
69

Question:-

 \sf \red{ Find  \: the \:  term} \green{  \: independent  \: of  \: x  }\\  \sf  \purple{in  \: the \:  expansion \: of }\:  (x+ \frac{1}{x} )^{10}</p><p> \:

Answer:-

 \red{ \sf Term \:  independent  \: of  \: x \:  is \: } \sf 252  \:  \: or \:  ^{10}C_{5} \: \:  \:

To Find :-

→ Term independent of x .

Explanation :-

We have expansion -

 \leadsto \sf  { \bigg(x +  \frac{1}{x} \bigg) }^{10}  \\  \\ \sf  \green{term \: independent \: of \: x }\: means \: the \: term \:   \\ \sf  \orange{which \: is \: not \: depend \: on \: }x \: ( {x}^{0})  \\  \bf \: hence \\  \\  \because  \sf \red{ for \: coefficient \: of} \: x \:  \: \blue{  \{ ^{n}C_{r} \:  {a}^{n - r}  {x}^{r}  \} }\:  \\  \\  \to \sf ^{10}C_{r} \: \:  {x}^{(10 - r)}  \:  { \bigg( \frac{1}{x}  \bigg)}^{r}  \\  \\  \to \sf \: ^{10}C_{r} \: {x}^{(10 - r)}  {x}^{( - r)}  \\  \\  \to \sf \: ^{11}C_{r} \: \:  {x}^{(10 - r - r)}  \\  \\ \bf \red{ for \: term \:} \green{ independent \: of \: x} \\  \\  \to \sf 10 - r - r = 0 \\  \\  \to \sf \: 2r = 10 \\  \\  \to \boxed{ \sf r = 5} \\  \\ \sf  hence \\  \\  \leadsto \sf ^{10}C_{5} \: {x}^{(10 - 5 - 5)}  \\  \\  \to \sf ^{10}C_{5} \: {x}^{1}  \\  \sf or \:  \\  \to \sf  \frac{10 \times 9 \times 8 \times 7 \times 6 }{5 \times 4 \times 3 \times 2 \times 1}  \\  \\  \leadsto \sf \: 252 \\  \\ \sf Term \:  independent  \: of  \: x \:  is \:  252  \:  \: or \:  ^{10}C_{5} \: \:

Hope it helps you .

Similar questions