Math, asked by OfficialPk, 2 months ago

Find the
 \sf {8}^{th}  \: term \: of \bigg(1 -  \dfrac{5x}{2}  \bigg) ^{ \frac{ - 3}{5} }

Answers

Answered by ApprenticeIAS
2

\sf {8}^{th} \: term \: of \bigg(1 - \dfrac{5x}{2} \bigg) ^{ \dfrac{ - 3}{5} }  \\

 \underline{ \underline{ \sf{ \red{sol.}}}} \red{ :} \rm{On  \: comparing  \: with  \: (1-X)^ \dfrac{-p}{q},  \: we \:  get}

 \rm{X = \dfrac{5x}{2}, \:  p = 3,  \: q=5}

 \rm{The  \: general  \: term \:  in  \: this  \: expansion  \: is}

 \boxed{ \boxed{T_{r+1}= \dfrac{p(p+q)...(p+(r-1)q)}{r!} \bigg( \dfrac{X}{q} \bigg)^r}}

 \rm{Put  \: r = 7,  \: we  \: get }

  \implies \: T_{7+1}= \dfrac{3(3+5)...(3+(7-1)5)}{7!} \bigg( \dfrac{5x}{10} \bigg)^7

 \boxed{ \boxed{ \rm{T_8 = \dfrac{3(8)(13)...(33)}{7!} \bigg( \dfrac{x}{2} \bigg)^7}}}

Similar questions