Find the third divided difference with
arguments 2, 4, 9, 10 of the function
f (x) = x - x
3 2 .
Answers
Answer:
The Third Dividend Difference with arguments 2, 4, 9, 10 of the function f(x) = x³-2x is 1.
Step-by-step explanation:
The given function is f(x) = x³-2x
Given arguments - 2,4,9,10
Let x₀ = 2, x₁ = 4, x₂ = 9, x₃ = 10
∴ f(x₀) = f(2) = 2³ - 2×2 = 4
∴ f(x₁) = f(4) = 4³ - 2×4 = 56
∴ f(x₂) = f(9) = 9³ - 2×9 = 711
∴ f(x₃) = f(10) = 10³ - 2×10 = 980
∴ First Dividend Difference -
i) Δₓ₁f(x₀) = f(x₀,x₁) = {f(x₁) - f(x₀)}/(x₁ - x₀) = (56-4)/(4-2) = 26
ii) Δₓ₂f(x₁) = f(x₁,x₂) = {f(x₂) - f(x₁)}/(x₂ - x₁) = (711-56)/(9-4) = 131
iii) Δₓ₃f(x₂) = f(x₂,x₃) = {f(x₃) - f(x₂)}/(x₃ - x₂) = (980-711)/(10-9) = 269
∴ Second Dividend Difference -
i) Δ₍ₓ₁,ₓ₂₎f(x₀) = f(x₀,x₁,x₂) = {f(x₁,x₂) - f(x₀,x₁)}/(x₂ - x₀) = (131-26)/(9-2) = 15
ii) Δ₍ₓ₂,ₓ₃₎f(x₁) = f(x₁,x₂,x₃) = {f(x₂,x₃) - f(x₁,x₂)}/(x₃ - x₁) = (269-131)/(10-4) = 23
∴ Third Dividend Difference -
Δ₍ₓ₁,ₓ₂,ₓ₃₎f(x₀) = f(x₀,x₁,x₂,x₃) = {f(x₁,x₂,x₃) - f(x₀,x₁,x₂)}/(x₃ - x₀)
= (23-15)/(10-2) = 1
∴ The Third Dividend Difference with arguments 2, 4, 9, 10 of the function f(x) = x³-2x is 1.
Answer:
The Third Dividend Difference with arguments 2, 4, 9, 10 of the function f(x) = x³-2x is 1
Step-by-step explanation:
the given function is f(x)=
given arguments,
=2
Let x₀ = 2, x₁ = 4, x₂ = 9, x₃ = 10
substitute value of in f(x)=f(x)=
∴ f(x₀) = f(2) = 2³ - 2×2 = 8-4=4
∴ f(x₁) = f(4) = 4³ - 2×4 = 64-8=56
∴ f(x₂) = f(9) = 9³ - 2×9 = 729-18=711
∴ f(x₃) = f(10) = 10³ - 2×10 = 1000-20=980
First dividend difference
1)Δₓ₁f(x₀) = f(x₀,x₁)=f(x₁) - f(x₀)}/(x₁ - x₀)=56-4)/(4-2) = 26
2) Δₓ₂f(x₁) = f(x₁,x₂) = {f(x₂) - f(x₁)}/(x₂ - x₁) = (711-56)/(9-4) = 131
3) Δₓ₃f(x₂) = f(x₂,x₃) = {f(x₃) - f(x₂)}/(x₃ - x₂) = (980-711)/(10-9) = 269
Second Dividend Difference
1) Δ₍ₓ₁,ₓ₂₎f(x₀) = f(x₀,x₁,x₂) = {f(x₁,x₂) - f(x₀,x₁)}/(x₂ - x₀) = (131-26)/(9-2) = 15
2)Δ₍ₓ₂,ₓ₃₎f(x₁) = f(x₁,x₂,x₃) = {f(x₂,x₃) - f(x₁,x₂)}/(x₃ - x₁) = (269-131)/(10-4) = 23
Third Dividend Difference
Δ₍ₓ₁,ₓ₂,ₓ₃₎f(x₀) = f(x₀,x₁,x₂,x₃) = {f(x₁,x₂,x₃) - f(x₀,x₁,x₂)}/(x₃ - x₀)
= (23-15)/(10-2) = 1
∴ The Third Dividend Difference with arguments 2, 4, 9, 10 of the function f(x) = x³-2x is 1.
#SPJ2