Math, asked by tinaaa, 1 year ago

find the third vertex of the equilateral triangle A(0,0),B(3,√3)

Answers

Answered by BEJOICE
1
Let 3rd vertex be C(x,y). We have AB = BC = AC
AB =
 \sqrt{ {(3 - 0)}^{2} +  {( \sqrt{3} - 0) }^{2}  }  =  \sqrt{12}
BC =
 \sqrt{ {(x - 3)}^{2} +  {(y -  \sqrt{3}) }^{2}  }
AC =
 \sqrt{ {x}^{2}  +  {y}^{2} }
AB = AC gives
 {x}^{2}  +  {y}^{2}  = 12 -  -  - (1)
BC = AC gives
 {(x - 3)}^{2}  +  {(y -  \sqrt{3)} }^{2}  =  {x}^{2}  +  {y}^{2}  \\ 3x +  \sqrt{3} y = 6 -  -  - (2)
Substituting (2) in (1),
 {( \frac{6 -  \sqrt{3}y }{3}) }^{2}  +  {y}^{2}  = 12 \\  {y}^{2}  -  \sqrt{3} y - 6 = 0 \\ y = 2 \sqrt{3}  \:  \:  \: or \:  \:  \:  -  \sqrt{3}
Substituting values of y in (2),
x = 0 \:  \:  \: or \:  \:  \: 3
Thus the 3rd vertex is (0,2√3) or (3,-√3)
Similar questions