Find the third vertices of an equilateral triangle of vertices are (1,1) and (-1,-1).
Answers
Answer:
The coordinates of the third vertex of the triangle are either ( - √3, √3 ) or ( √3, - √3 ).
Step-by-step-explanation:
NOTE: Refer to the attachment for the diagram.
Let the equilateral triangle be △ABC.
- A ≡ ( 1, 1 ) ≡ ( x₁, y₁ )
- B ≡ ( - 1, - 1 ) ≡ ( x₂, y₂ )
- C ≡ ( x, y )
We know that,
All the three sides of an equilateral triangle are equal in length.
∴ AB = BC = AC
⇒ d ( A, B ) = d ( B, C ) = d ( A, C )
Now,
d ( A, B ) = d ( B, C )
By distance formula,
√[ ( x₁ - x₂ )² + ( y₁ - y₂ )² ] = √[ ( x₂ - x )² + ( y₂ - y )² ]
By squaring both sides, we get,
⇒ ( x₁ - x₂ )² + ( y₁ - y₂ )² = ( x₂ - x )² + ( y₂ - y )²
⇒ [ 1 - ( - 1 ) ]² + [ 1 - ( - 1 ) ]² = ( - 1 - x )² + ( - 1 - y )²
⇒ ( 1 + 1 )² + ( 1 + 1 )² = ( - 1 )² - 2 * ( - 1 ) * x + x² + ( - 1 )² - 2 * ( - 1 ) * y + y²
⇒ ( 2 )² + ( 2 )² = 1 + 2x + x² + 1 + 2y + y²
⇒ 4 + 4 = 1 + 1 + 2x + x² + 2y + y²
⇒ 8 = 2 + 2x + x² + 2y + y²
⇒ x² + 2x + y² + 2y + 2 - 8 = 0
⇒ x² + 2x + y² + 2y - 6 = 0 - - - ( 1 )
Now,
d ( B, C ) = d ( A, C )
By distance formula,
√[ ( x₂ - x )² + ( y₂ - y )² ] = √[ ( x₁ - x )² + ( y₁ - y )² ]
By squaring both sides, we get,
⇒ ( x₂ - x )² + ( y₂ - y )² = ( x₁ - x )² + ( y₁ - y )²
⇒ ( - 1 - x )² + ( - 1 - y )² = ( 1 - x )² + ( 1 - y )²
⇒ ( - 1 )² - 2 * ( - 1 ) * x + x² + ( - 1 )² - 2 * ( - 1 ) * y + y² = ( 1 - x )² + ( 1 - y )²
⇒ 1 + 2x + x² + 1 + 2y + y² = ( 1 )² - 2 * 1 * x + x² + ( 1 )² - 2 * 1 * y + y²
⇒ 1 + 1 + 2x + 2y + x² + y² = 1 - 2x + x² + 1 - 2y + y²
⇒ 1 + 1 + 2x + 2y + x² + y² = 1 + 1 - 2x - 2y + x² + y²
⇒ 2x + 2y = - 2x - 2y
⇒ 2x + 2x = - 2y - 2y
⇒ 4x = - 4y
⇒ x = - y
By substituting x = - y in equation ( 1 ), we get,
x² + 2x + y² + 2y - 6 = 0 - - - ( 1 )
⇒ ( - y )² + 2 * ( - y ) + y² + 2y - 6 = 0
⇒ y² - 2y + y² + 2y - 6 = 0
⇒ y² + y² - 2y + 2y - 6 = 0
⇒ 2y² - 6 = 0
⇒ 2y² = 6
⇒ y² = 6 ÷ 2
⇒ y² = 3
⇒ y = ± √3
Now,
x = - y
⇒ x = - ( ± √3 )
⇒ x = ∓ √3
∴ ( x, y ) = ( ∓ √3, ± √3 )
∴ The coordinates of the third vertex of the triangle are either ( - √3, √3 ) or ( √3, - √3 ).