find the three no in arithmetic progression whose sum is 3 and whose product is - 15
Answers
Answered by
7
Let the 3 terms of A.P be:
- (a - d)
- a
- (a + d)
In the given question,
☞ The sum of these 3 terms is 3.
(a - d) + a + (a + d) = 3
⇒ a - d + a + a + d = 3
⇒ 3a = 3
⇒ a = 3 ÷ 3
⇒ a = 1
So, The First term = a = 1
Also,
☞ Product of the 3 terms = -15
(a - d) a (a + d) = -15
⇒ (a - d) (a + d) a = -15
⇒ a (a² - d²) = -15
⇒ a³ - ad² = -15
⇒ 1³ - 1(d²) = -15
⇒ 1 - d² = -15
⇒ d² = 16
⇒ d = √16
⇒ d = ± 4
So, Common difference = d = ± 4
Case 1: If d = + 4
The 3 terms of A.P →
- (a - d) = 1 - 4 = -3
- a = 1
- (a + d) = 1 + 4 = 5
∴ The First 3 terms = -3, 1, 5
OR
Case 2: If d = -4
The 3 terms of the A.P →
- (a - d) = 1 - (-4) = 1 + 4 = 5
- a = 1
- (a + d) = 1 - 4 = -3
∴ The First 3 terms = 5, 1, -3
Similar questions