find the three numbers of the AP whose sum is 24 and the sum of the cube is 1968
Answers
Answered by
6
ANSWER
LET THE THREE NUMBERS BE a,a+d and a-d
=a-d+a+a+d=24
=3a=24
=a=8
[a-d]³+[a]³+[a+d]³=1968
[a+b]³=a³+b³+3a²b+3ab²
[a-b]³=a³-b³-3a²b+3ab²
=a³+a³-d³-3a²d+3ad²+a³+b³+3a²d+3ad²=1968
3a³+2[3ad²]=1968
3a³+6ad²=1968
=3[a³+2ad²]=1968
a³+2ad²=656
=512+16d²=656
=16d²=144
d²=9
=d=±3
so the three numbers are 5,8 and 11
Similar questions
English,
7 months ago
English,
7 months ago
Environmental Sciences,
1 year ago
History,
1 year ago
English,
1 year ago